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ABSTRACT
This industry paper describes a deep learning and information
retrieval system that allows cancer registries to extract cancer mor-
tality statistics from free-text death certificates. Death certificates
may provide an invaluable source of mortality information but to
realise this value automated methods for classifying cancer types
and searching certificates are needed. We present a system compris-
ing a deep learning classifier to identify cancer related deaths, an
IR system to allow users to search death certificates and classifier
results, and a deployment architecture that aims to handle issues of
scalability and complexity. Empirically, the system can accurately
identify cancer deaths for both common and rare cancers. The use
of the IR system helps users drill into specific results and convince
them of the utility of using an automated approach. The paper aims
to touch on a number of issues in applying deep learning and IR
techniques to real-world settings.
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1 INTRODUCTION
A death certificate is a legal document, issued by a medical practi-
tioner, certifying the cause of a person’s death. In aggregate, the
cause-of-death represents a vital source of mortality statistics [1].
Cancer registries1 rely heavily on such data to provide an accurate
picture of the impact of cancer, the effect of cancer treatments and to
direct research efforts for cancer control. However, cancer registries
receive an overwhelming number of free-text death certificates;
each of which needs to be manually assessed to determine if it is
1Cancer registries are organisations responsible for the reporting and monitoring of
cancer in the general population.
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a cancer related death and, if so, the specific type of cancer. The
problem is compounded by the fact that some cancers are extremely
rare with only a few cases a year, while others are very common.

(A) LIVER FAILURE (B) LIVER METASTASES (C) BREAST CANCER

Figure 1: Sample death certificate. The underlying cause-of-
death is breast cancer (C50).

A sample, cancer-related, death certificate is shown in Figure 1.
Death certificates are authored according to a specific procedure:
Statement A) being the “Disease or condition directly leading to
death” and the ordering interpreted as A) due to B) due to C), and
C) being the underlying cause of death.

In this paper, we describe a system to automatically extract can-
cer statistics from death certificates. The system is comprised of: 1)
a deep learning system that, given a death certificate, assigns an
appropriate cancer class according to ICD102; 2) an IR system with
web UI allowing users to search death certificates using both ad-hoc
queries and ICD10 codes; and 3) an integrated system architecture
with docker-based micro-services for flexible and scalable deploy-
ment of the system within cancer registries. This paper describes
an industry project between researchers at CSIRO and Queensland
Cancer Control Analysis Team within Queensland Health.

Existing approaches to classifying death certificates have been
either rule-based [4, 5] or machine learning (ML) [2]. While ML
was generally more effective they had performed very poorly for
rare cancers. They also used extensive domain specific features
from an NLP pipeline and implemented multiple binary classifiers
for each cancer - the scalability and complexity of such a system
was prohibitive. To overcome the poor performance of rare cancers
a hybrid rule/ML approach is possible [3]. While this solved the
problem of rare cancers it added an extra layer of complexity of
integrating rules andMLmodels and how to normalise classification
scores between the two which risked overfitting. It also resulted in
a complex, resource intensive deployment architecture. While these
existing approaches do perform quite well empirically, their ability
to translate from the lab to a production environment is hampered
by issues of complexity and scalability, both in training the models
and in running when in production.

The contribution of this paper is a system that overcame a num-
ber of these issues. The models used simple term features, alleviat-
ing the need for domain-specific NLP pipelines. A single multi-class,
rather than multiple binary, model was developed (alleviating score
normalisation between models). A lightweight resource footprint
2ICD10 is a medical classification system that contains codes for diseases, signs and
symptoms, abnormal findings, complaints, social circumstances, and external causes
of injury or diseases.
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Figure 2: System architecture (read left to right). Death certificates were input frommultiple sources. They were classified and
then indexed into an Elastic search engine. Ad-hoc search and result summarisation was provided via a web interface.

(CPU & memory), as well as flexible deployment architecture, made
a more scalable and efficient system. Our empirical evaluation on
one year’s worth of certificates showed that the system could ac-
curately classify most cancers (both common and rare). Analysis
of errors showed that these were often where the death certifi-
cate did not accurately reflect the cause of death (e.g., where later
investigation contradicted the initial cause of death).

2 METHODS
2.1 Death certificate dataset & ground truth
A collection of 355,164 death certificates, covering all deaths be-
tween 1999 and 2006 was used for training. A key characteristic of
this dataset was that each contained a cause-of-death code provided
by the Australian Bureau of Statistics. Therefore, cancer codes rep-
resented the ground truth for training a deep learning model for
automated classification of cancer deaths.

The use case for the proposed systemwas the Queensland Cancer
Control Analysis Team within Queensland Health. They provided
29,560 certificates covering all deaths for 2015. At the time, these
were manually coded with cancer related cause-of-death-codes.
This represented the validation set to evaluate the proposed system.

2.2 Cancer classification
Given a free-text death certificate, the aim was to 1) identify if
the death was cancer related and; 2) determine the specific type of
cancer (according to the ICD10 medical classification system). To
this end, we trained a multilayer perceptron deep learning-based
model. This was a multi-class classifier with each class representing
a cancer related ICD10 code and additional class of “NotCancer”
for all other non-cancer deaths. As features, we used word tokens,
represented as one-hot encoded binary vectors. The architecture
had 3 layers: input layer with a size amounting to the vocabulary
size (i.e., number of unique words in the collection), a hidden layer
of size 500 nodes, and output layer of size 71, representing each of
the different applicable cancer types.

Training was done using a 75% / 25% train/validation split of
the test collection with 5 epochs. On completion, the model was
serialised for deployment within a wider deployment architecture
we detail later.

Two requirements existed for cancer identification: identify if
the cause of death was cancer and determine the type of cancer.
The former is a binary cancer/no-cancer classification; the later
a multi-class ICD10 classification. The binary classification was

determined via a possible classification for any of the ICD10 cancer
codes; negative classification was taken as the “NotCancer” label.

The classifier was implemented in Python’s Keras package using
the Tensorflow library.

A hybrid rule/ML approach is chosen as a benchmark for com-
parison [3]. The same training and test collections as [3] were used
to evaluate the deep learning methods outlined in the paper.

2.3 Search engine
While the cancer classification provided by the deep learning model
was important, the overall value of such a system was only realised
if humans can easily interact with the data. Toward this aim, a
search engine was implemented allowing users to search both the
free-text of death certificates, the cancer classification of the model
and the ground truth (where available). The purpose of the search
engine was threefold: 1) Provide a means for users — typically
analysts from the Cancer Control Analysis Team — to issue ad-
hoc queries across the collection of death certificates to investigate
specific cancers or conditions. Users would like to both see a ranked
list of relevant death certificates to their query, as well as summary
statistics of the number of each cancer types found in the set of
results. 2) Provide a means for users to understand and monitor the
performance of the automated classification system, assuring them
of its effectiveness before its fully adopted. 3) Identify individual
cases where cancer related deaths may have been misdiagnosed.

All death certificates were indexed in a fielded Elasticsearch
instance; fields included the original death certificate text, the ICD10
classification from the classifier, the description of the ICD10 code
(e.g., “Lung cancer” for C43), and the ground truth code (if available).
This allowed user to search both text and ICD10 codes (which users
were very familiar with). Ranking was done in BM25.

A web-based interface was implemented with a single text box
for ad-hoc queries. Given a query, a ranked list of death certificates
was provided, including the cancer classification and ground truth
(if available). Summary histograms showing a breakdown of the
cancer types were also shown. (More details on the search interface
are provided in the results section.)

2.4 Deployment Architecture
Figure 2 provides an overview of the system architecture. To sup-
port a decoupled and scalable architecture, individual components
were decoupled and deployed as separate docker containers. From
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Precision 29,560 Classifier
0.8740 - +
Recall Ground - 19,899 1,176
0.9720 truth + 236 8,159

Table 1: Binary classification results with confusion matrix;
+ denotes cancer and - denotes nocancer.

Precision Recall

Micro avg. 0.8726 0.9675
Macro avg. 0.8408 0.9303

Table 2: Average classification results across all classes.
Precision Recall

Hydrid rule/ML benchmark [3] 0.8086 0.8054
Proposed 0.8408 0.9303

Table 3: Comparison against hybrid rule/ML benchmark [3].

left to right in the figure: 1) A Logstash3 instance ingested death
certificates from any source type that has Logstash support. This
could be a single certificate from a daily trickle feed, for example,
or a batch archived from previous years and stored in a database.
Logstash placed each certificate on a queue ready for processing. 2)
The Indexer popped items off the queue and issued the death cer-
tificate to a standalone Death certificate classifier via an HTTP
REST interface. The resulting classification (and probability repre-
senting confidence) was returned. To support scalable processing of
many certificates, multiple Indexers & Death certificate classifiers
could be run in parallel. 3) The death certificate and classification
(ICD10 code and cancer description) were indexed into the Elastic
search engine. 4) Users interacted via a Web search interface that
talked to the Elastic search engine.

3 RESULTS & ANALYSIS
3.1 Classification results
The binary (cancer or no cancer) classification results are shown in
Table 1, including precision, recall and a confusion matrix. Recall
was high, indicating the classifier found most cancer related deaths.
Precision was still high but reduced somewhat by false positives.
Indeed, from the confusion matrix, false positives made up the
majority of errors. For this task, a false negative (i.e., missed cancer
death) was more harmful than a false positive; thus the systems
higher recall at the expense of precision was desirable.

Individual cancer results are shown in Figure 3. Results are or-
dered by prevalence (common cancers on top; rare cancer at the
bottom). The data shows that in Queensland the five most common
cancers deaths were lung, colon, prostate, breast and pancreatic.
Recall was high for all cancer but, more importantly, remained high
for rare cancers. A limitation here being that for rare cancers there
were only a few samples for evaluation. Lower precision (i.e., more
false positives) was observed mainly for cancers which were not
very common or very rare (i.e., in the middle).

To provide an overall estimate of cancer type classification effec-
tiveness, Table 2 reports micro and macro average precision and
recall. In addition, comparison with the hybrid rule/ML benchmark
of [3] are shown in Table 3. The less complex method outlined in
this paper outperformed the existing benchmark.
3Logstash is a data processing pipeline that allows for the collection of data from a
variety of sources, transforming it on the fly, and sending it to some desired destination.

Precision Recall
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Figure 3: Classification results for individual cancers.

3.2 Search engine
A screenshot of the web search interface is shown in Figure 4. A
table of results on the left of the screen showed death certificates
matching the query “kidney". For each result, the death certificate
text was shown as well as a grey label indicating the ICD10 clas-
sification for that certificate. If ground truth data was available
then the ICD10 ground truth code was shown: blue labels indicated
the classification matched the ground truth; red label indicates an
incorrect classification. A mouse hover over any ICD10 label pro-
vided a black popup with the description of the cancer code and
the probability of that classification.

Two histograms were displayed on the right of the screen; they
showed the distributions of cancers for the current set of search
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Figure 4: Web search interface.

results (for both the classifier and the ground truth data). This
provided the user with a simple visual overview of results. It also
allowed for a quick understanding of incorrect classifications. Be-
fore putting the system into production, users needed to both be
confident that the system was effective and to understand the im-
pact of errors. This interface provided a good mechanism to drill
into results and allow the users to assess the utility of the system.

Initial use of the search system by end-users has revealed: 1) Dif-
ficulties in determining the underlying cause of death where there
weremultiple conditions. For example, the certificate: Breast NotCancer
(A) MYOCARDIAL INFARCT (B) CARCINOMA BREAST. The classifier indi-
cated breast cancer but the cause of death was not cancer; instead
it was a heart attack (also known as myocardial infarct). Further in-
vestigation indicated the breast cancer was 10 years ago and hence
not related to the heart attack. A number of certificates displayed
such characteristics. 2) Situations where the actual cause of death
was not known at the time the death certificate was authored. For
example, the certificate Brain Lung METASTASES TO BRAIN, where
the cancer had spread to the brain but actually originated from the
lung (only known after the certificate was authored). 3) That skin
cancers in the form of squamous cell and basal cell carcinoma were
special cases that should not be notified as a cancer case.

4 CONCLUSION
Accurate cancer mortality statistics can be extracted from free-text
death certificates with appropriate automated methods. This paper
describes a system to do this via three components: a deep learn-
ing classifier to determine a specific cancer cause-of-death from a

death certificate; an IR system (with web UI) to search the results,
study specific cancers and convey to users that the classifier is
effective; a scalable deployment architecture that overcomes some
of the barriers of putting such systems into production. The classi-
fier achieved a precision and recall of 0.87 and 0.97 respectively —
effective enough for adoption. The IR system helped users better
understand their death certificates and how they were classified.
Future work will look at integrating the system with other sources
of data, such as pathology reports, particularly for cases where the
cause-of-death is ambiguous or not known from the death certifi-
cate. Relevance assessments will also be collected to evaluate and
improve the search engine. Lessons from this paper are intended to
help those applying deep learning and IR to real-world applications.
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