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A B S T R A C T

Objective: Death certificates are an invaluable source of cancer mortality statistics. However, this value can only
be realised if accurate, quantitative data can be extracted from certificates—an aim hampered by both the vol-
ume and variable quality of certificates written in natural language. This paper proposes an automatic classifica-
tion system for identifying all cancer related causes of death from death certificates.
Methods: Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection
of 447,336 death certificates. The features were used as input to two different classification sub-systems: a ma-
chine learning sub-system using Support Vector Machines (SVMs) and a rule-based sub-system. A fusion sub-sys-
tem then combines the results from SVMs and rules into a single final classification. A held-out test set was used
to evaluate the effectiveness of the classifiers according to precision, recall and F-measure.
Results: The system was highly effective at determining the type of cancers for both common cancers (F-measure
of 0.85) and rare cancers (F-measure of 0.7). In general, rules performed superior to SVMs; however, the fusion
method that combined the two was the most effective.
Conclusion: The system proposed in this study provides automatic identification and characterisation of cancers
from large collections of free-text death certificates. This allows organisations such as Cancer Registries to mon-
itor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are
generally applicable beyond cancer classification and to other sources of medical text besides death certificates.

1. Introduction

Cancer notification and reporting remains a critical activity for Can-
cer Registries who are charged with providing an accurate picture of the
impact of cancer, the effect of cancer treatments and to direct research
efforts for cancer control. A critical source of cancer information comes
in the form of free-text death certificates [1]. Death certificates provide
population-based cancer mortality statistics that in turn provide a mea-
sure of the effectiveness of healthcare systems and guide cancer control
strategies [2].

However, Cancer Registries receive an overwhelming number of
death certificates (about 44,700 certificates annually for the Cancer In-
stitute NSW⁠1); only a portion of these contain cancer (approx. 30%
[3]). Manual identification of cancers from this volume of certificates is

resource intensive. An effective automated method for cancer classifica-
tion would allow for up-to-date mortality information used in the mon-
itoring, planning and evaluating the management of cancers that are of
high public health importance. Some automated approaches have been
developed [4], however, these are typically targeted at specific cancers
and do not consider an integrated system that includes all cancers, both
common and rare.

In this paper, we propose an integrated system for the automatic
classification of all cancers—both common and rare—from free-text
death certificates. The system has a number of components: (i) a nat-
ural language processing (NLP) pipeline that extracts detailed features
(e.g., terms, n-grams, SNOMED CT⁠2 codes and ICD-O⁠3 properties) from
death certificates; and (ii) a set of machine learning classifiers that ex-
ploit these features to determine the presence of common cancers; (iii)
a set of rule-based methods for better handling rare cancers; and (iv) a
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fusion method to combine the machine learning and rule-based methods
into a single system (see Fig. 3 for an architectural overview).

A detailed empirical evaluation on 10 years of coded death certifi-
cates shows that the proposed system is effective at determining the type
of cancers for both common cancers (F-measure of 0.85) and rare can-
cers (F-measure of 0.7). Overall combined F-measure effectiveness was
0.84.

Analysis of the results shows that many death certificates received
multiple positive cancer classifications from different classifiers (both
rule and SVM), whereas a requirement was to determine a single un-
derlying cause of death. The proposed fusion method overcomes this by
applying a number of different strategies to rank multiple classifications
and determine the most likely, single classification.

The findings of this study helps guide the development of automated
methods for multi-class text classification tasks beyond cancer classifi-
cation and could be applied to other data sources besides death certifi-
cates.

2. Task description—identifying cancer from death certificates

The use case or task proposed in this study is to identify whether a
specific cancer (according to the ICD-10 classification system) was the
underlying cause of death from a free-text death certificate. It is impor-
tant that this works for all cancers, both common and rare, as these can
have differing requirements. For common cancers that have a high im-
pact on society, an automated system allows for accurate monitoring to
understand and direct treatment efforts. For rare cancers, an automated
system provides a means to find rare yet important pieces of informa-
tion that may help better understand and treat such cancers.

Before detailing in the next sections how this can be achieved with
an automated classification system, this section provides an understand-
ing of the particular characteristics of death certificates and the data col-
lection methods used in this study; this helps to understand the design
of the automated classification system.

2.1. Death certificate format

Death certificates are authored according to a specific procedure [5]
and therefore this affects how any automated classification is both de-
veloped and evaluated. Fig. 1 provides a sample death certificate. Sec-
tion (I) contains the main causes of death with the first entry, (A), be-
ing the “Disease or condition directly leading to death”. The ordering of
section (I) should be interpreted as (A) “due to or as a consequence of”
(B) “due to...” (C), with the last entry, (D), often (but not always) listed
as the underlying cause of death. Section (II) contains “Other significant
conditions contributing to the death, but not related to the disease con-
dition causing it”. For the purpose of this study, this certificate should
be classified as of type C34 (Malignant neoplasm of bronchus and lung).

1 Annual average for years 1999–2008, obtained using the dataset from this study.
2 SNOMED CT is a standardised healthcare terminology including comprehensive

coverage of diseases, clinical findings, therapies, procedures and outcomes.
3 The International Classification of Diseases for Oncology (ICD-O) is a domain-specific

extension of the International Statistical Classification of Diseases and Related Health
Problems for tumor diseases. This classification is widely used by cancer registries.

Fig. 1. Sample death certificate. The certificates conforms to a format recommended by
the World Heath Organisation, where section (I) contains the causes directly leading to
death and (II) contains other contributing conditions.

2.2. Collection of death certificates

The Cancer Institute NSW supplied free-text, de-identified death cer-
tificates for the years 1999–2008 (inclusive).⁠4 The certificates were di-
vided into separate training and testing sets so that automatic methods
could be developed using certificates from the training set and subse-
quently evaluated on certificates from the unseen test set. The train/test
split was based on the year the certificate was issued, with details pro-
vided in Table 1. The split of training and test sets by date was deliber-
ately done because this reflects the realistic setting in which the system
would be used in a Cancer Registry. In such a real-world setting, a clas-
sifier could only be trained on retrospective data from previous years
and then used to classify data from the current year; thus we replicate
this situation in our experimental methodology.

2.3. Ground truth

A single underlying cause of death (in the form of ICD-10 code [5])
for each certificate was assigned by the Australian Bureau of Statis-
tics (the organisation responsible for maintaining cause-of-death statis-
tic in Australia). These ICD-10 codes constitute the ground truth against
which the automated classification method is evaluated. All ICD-10
codes were truncated at the three characters level; for example, the code
C34.1 (Malignant neoplasm: Upper lobe, bronchus or lung) was converted
to simply C34 (Malignant neoplasm of bronchus and lung).

Cancer deaths were identified as those certificates assigned any
ICD-10 code from ICD-10 Chapter II (Neoplasms) [6], including in situ
and benign cancers (i.e., all codes in the range“C00” to “D49”). The
frequency distribution according to the type of cancer is shown in Fig.
2. The figure shows that a small subset of cancer types make up the
vast majority of cancer-caused deaths: the top 20 most prevalent can-
cers constitute approximately 85% of all cancer deaths. It also shows
that there are a large number of rare cancers. While previous work has
focused on either the top 20 common cancers [7–9,4,10], or a specific
rare cancer [11,4], in this work we aim to investigate a general solution
that handles both common and rare cases.

3. Related work

Cancer Registries are increasingly turning to automated methods to
extract cancer related statistics from increasing volumes of the cancer
related data they receive. For example, the Danish Cancer Registry in-
troduced electronic reporting and integration with the patient adminis-
trative system [12]; in Australia, the utility of automatically performing
cancer notifications and synoptic reporting from pathology and cytol-
ogy reports have shown to be promising [13]. These case studies show
there is both a need and viable use case for automated classification of
cancers from cancer registry data.

4 The data was provided with approval from the NSW Registry of Births Deaths and
Marriages under NSW Population & Health Services Research Ethics Committee
application HREC/11/CIPHS/60|.
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Table 1
Dataset of death certificates; separated into training and test sets based on the year the
death certificate was issued.

Training set Testing set

Years 1999–2006 2007–2008
Num. certificates 355,165 92,171
% cancer 29.0% 29.9%

There have been a number of text mining applications specifically
focusing on extracting cancer related information (Spasic et al. [4] pro-
vides a comprehensive review of these.) There are two main automated
approaches: rule-based and machine learning based. We review the ad-
vantages and disadvantages of each below, highlighting the case for a
hybrid approach, investigated in this work, that leverages the benefits
of both.

Historically, there has been an emphasis towards the use of
rule-based techniques [4], i.e., the use of pattern matching and dictio-
nary lookup for cancer-related entity extraction. A number of rule-based
approaches make use of natural language processing and pattern match-
ing aided by a medical domain knowledge resource, either the UMLS
Metathesaurus [14,15] or some other resource [9]. Rules are typically
developed manually, working with a domain expert and via manual re-
view of the textual data being classified.

Machine learning approaches have proven effective in a multitude
of different text classification tasks [16], including on death certificates
[17]. Specific to cancer classification from death certificates, Butt et al.
[18] developed a binary (i.e., cancer or no-cancer) classifier for free-text
death certificates. They found that a Support Vector Machine classifier,
trained on free-text death certificates with human ground truth data,
proved the most effective against a rule-based approach and a number
of other classification models. This was limited in that it only identi-
fied the cause of death as cancer and did not distinguish between differ-
ent types of cancers. Furthermore, validation was done on a small 5000
death certificate collection.

This limitation was overcome in a further study [10] by developing
classifiers (SVMs) for individual cancer types and empirically evaluat-
ing these on a large collection of death certificates. The proposed sys-
tem had two components: a natural language processing pipeline that
extracts features (both term and concept-based) from death certificates;
and a series of supervised Support Vector Machines, that utilise the ex-
tracted features for classification. The system was effective in classify-
ing common cancers (the same common set as those used in this study,
with average F-measure of 0.7) but performed poorly on rare cancers
(F-measure of 0.12)—a major limitation for the use of the system as ac-
curate mortality statistics are needed for both high impact common can-
cers and for rarer cancers. A further limitation of this approach was that
different classifiers could provide a positive classification for a single
death certificate (e.g., both breast cancer and lung cancer found to be
the cause of death); instead, it is a requirement that a single cause of
death be determined (inline with how death certificates are authored).

Both machine learning and rule-based approaches have specific ad-
vantages and disadvantages, making a hybrid approach attractive.
Rule-based approaches are easy to develop for small amounts of data
(e.g., for rare cancers), or when specific cancers are clearly defined and
unambiguous. They do not require large amounts of ground truth train-
ing data and can be computationally very efficient. However, some lim-
iting factors for rule-based techniques are: the effort required to de-
velop manual rules, which have to be defined on a case-by-case basis
for each cancer type; and brittleness of rule-based approaches to the
idiosyncrasies of the clinical sublanguage such as non-standard abbre-
viations as well as a high degree of spelling and grammatical errors.
In contrast, machine learning approaches do not require manual effort,

can “learn” the idiosyncrasies of the clinical sublanguage and have
proved empirically more effective on other classification tasks. The lim-
itations of machine learning are that they do require sufficient training
data (a problem for rare cancers) and the feature extraction and model
training processes can be computationally expensive.

With each method offering different advantages and disadvantages,
this paper investigates a hybrid approach that fused the results from
both machine learning and rule-based classifiers. The contributions of
this paper are: (i) the development of a symbolic, rule-based approach
that utilises both term and concept representations of the death certifi-
cate for cancer classification; (ii) a hybrid approach that combines rules
and SVMs to leverage the benefits of both approaches; and (iii) the in-
vestigation of different “fusion” methods to combine the results (and
scores) of multiple different classifiers.

4. Proposed hybrid fusion method

The proposed method is made up of four numbered components, il-
lustrated in Fig. 3: (1) the feature extraction method takes a free-text
death certificate and extracts both term and concept (SNOMED CT and
ICD-O) features; (2) the machine learning classifiers (SVMs); (3) the set
of rules; and (4) the fusion method that combines the classifier scores
from the SVMs and rules.

4.1. Feature extraction methods

The feature extraction process was performed using Medtex, a clini-
cal natural language processing system [19]. A variety of different fea-
tures are used for both the rules and to train a classification model. Fea-
tures fall into two different categories: (i) basic term-based features taken
directly from the text of the death certificate; and (ii) concept-based fea-
tures, derived from the original terms, where concepts belong to the
medical terminologies SNOMED CT and ICD-O. Table 2 describes the
different types of features extracted, belonging to these two categories.
For each feature type, a description is provided and an example of the
features that are consequently derived given the fragment of a death cer-
tificate. While term-based features are commonly used in text classifica-
tion tasks, the use of SNOMED CT and ICD-O features are more unique
and have proven effective [10].

Once all features were extracted, death certificates were transformed
from their original terms to feature vectors; for example, each word (To-
kenStem) or SNOMED CT concept represents a single feature dimension
in the vector, with features grouped into high level feature types (To-
kenStem or SCTConceptId). The actual values in the vector are a binary
indication of the presence of the feature in the particular death certifi-
cate. Further details on feature selection and their impact on effective-
ness can be found in [10].

4.2. Rule-based methods

The rule-based approach used only the SNOMED CT codes extracted
from a death certificate as part of the feature extraction method; these
were then mapped to ICD-10 codes according to the following proce-
dure:

• SNOMED CT codes were mapped to ICD-O codes. ICD-O is a do-
main-specific extension of the ICD for tumour diseases [6]. The
SNOMED CT to ICD-O maps are provided as part of the SNOMED CT
distribution.

• The resulting ICD-O codes were then mapped to ICD-10 codes. This
was done via an existing ICD-O to ICD-10 Conversion Program pro-
vided by the National Institute of Health but customised to include
only mappings to malignant neoplasms (i.e., ICD-10 codes having a

3
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Fig. 2. Number of death certificates with the cause of death classified as cancer by cancer type. Taken from the ground truth for the full set of death certificates (1999–2008).
prefix ‘C’).⁠5 The mapping table works by defining a mapping {mor-
phology, site}→ ICD-10 code, i.e., a given cancer morphology and pri-
mary site equals to a single cancer ICD-10 code.

• Note that a single death certificate will typically have multiple
SNOMED CT concepts extracted from it. This results in multiple
ICD-O mapping and, therefore, multiple candidate ICD-10 cancer
classifications for a single certificate. However, a single underly-
ing cancer-

5 ICD-O-3 to ICD-9-CM, ICD-10 (Cause of Death) and ICD-10-CM ICD Conversion
Programs http://seer.cancer.gov/tools/conversion.

related cause of death is required. As a result, the candidate ICD-10
codes had to be scored and ranked so that they could be later pruned
as part of the fusion method.

4.2.1. Candidate scoring
For each death certificate d, we denote the list of candidate codes

as C⁠d. The score for an individual c ∈ C⁠d is made up of three individual
scores, interpolated as:

(1)

4
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Fig. 3. Architecture overview showing the main components of the proposed cancer classification system. The feature extraction process extracts detailed features, used in turn by both
rules and SVMs. Multiple positive classifications for a single death certificates are scored and a single underlying cause of death is determined by the fusion method.

where λ⁠p + λ⁠s + λ⁠m = 1.0 and are used to control the relative impact
of each source of evidence. These parameters were tuned to the values
that maximised F-measure on the training set and then applied to the
test set.

The prev _ s core(c) component represents the prevalence of the
ICD-10 code c:

(2)

where N⁠c is the number of death certificates assigned the ICD-10 code c
in the training set and N is the total number of death certificates in the
training set. This effectively represents historical prevalence of cancer c.

The section _ s core(c) component accounts for which section of the
death certificate contained the evidence that fired the rule. Death cer-
tificate sections are in the following, decreasing order of precedence:
I-D, I-C, I-B, I-A, II. To calculate the section(c) component we first de-
termine the sequence of sections S⁠d relating to C⁠d such that each s⁠i ∈ S⁠d

represents the section for c ∈ C⁠d. The sections S⁠d are then sorted accord-
ing to the precedence order specified above and duplicates removed. Fi-
nally, the section score is then calculated as:

(3)

where |S⁠d| is the unique number of sections for that death certificate and
i is the index position of s⁠i ∈ S⁠d with s⁠0 representing the highest prece-
dence section (e.g., section I-D if that exists in d, otherwise the next
highest, I-C and so forth).

The morpth _ site _ score(c) component captures the {morphology,
site}→ ICD-10 code mapping:

(4)

5
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Table 2
Types of features—both term and concept-based—extracted from death certificates. (Stemming is a process of removing and replacing word suffixes to arrive at a common root form of
the word.)

Feature type Description
Example certificate
extract Resulting feature values

Term-based
TokenStem A token stem, i.e., the stemmed version of a word. Acute chronic renal

failure

Acut, chronic, renal, failur.

TokenStem n-
gram

The n-gram formed by n adjacent token stems. CHRONIC RENAL FAILURE chronic renal, renal failur.

Concept-based
ICDOMorph Standard ICD-O Morphology classification system ADENOCARCINOMA OF THE

LUNG

M-81403

ICDOSite Standard ICD-O body site classification LUNG CANCER C34.9 (Malignant neoplasm of Bronchus or
lung)

ICDOMorphBerg Major groupings of carcinomas and non-carcinomas (as defined
by [20])

ADENOCARCINOMA OF THE

LUNG

Adenocarcinomas

ICDOSiteGroup Course grained body site descriptions LUNG CANCER C30-C39 (Respiratory system and intratoracic
organ)

SCTConceptId SNOMED CT concept identifier (as extracted by the Medtex
system)

chronic renal failure 90688005

If a death certificate mentions both a morphology and a site then a sin-
gle ICD-10 code is deduced and morph _ site _ score(c) = 1.0. If only a
morphology is mentioned then more than one ICD-10 code may be possi-
ble and the morph _ site _ score captures this ambiguity.

4.3. Machine learning methods

We reproduced the method of [10], namely multiple ICD-10 binary
classifiers, one for each type of cancer, were trained to label a death
certificate with a particular ICD-10 code. For the implementation of the
classifiers we use Support Vector Machines (SVMs). The feature vec-
tors resulting from the feature extraction process were used to train the
SVMs. The training set was taken from 1999 to 2006 certificates, while
certificates from 2007 to 2008 were held out as an independent test set
(as per Table 1).

In addition to the binary classification of the SVMs, a score or like-
lihood of correctness is required to handle cases when multiple positive
classifications occur for a single death certificate. This SVM likelihood
can as a function of the distance from the point to be classified and the
hyperplane, which separates positive and negative classifications. This
likelihood is used in conjunction with the rule-based score to determine
the highest ranked classification to assign to a given death certificate.

4.4. Fusion method

Multiple ICD-10 codes can be applied to a single death certificate,
either by multiple SVMs producing positive classifications or by the
rule-based approach producing mappings to multiple ICD-10 codes; or a
combination of the two. However, there is a requirement for a single un-
derlying cause of death for a given certificate. Therefore, a fusion strat-
egy was developed to produce a single cause of death; this is outlined
below.

Let C⁠d be the set of positive classifications (from rule or SVM) for
a particular death certificate d. Note that each positive classification
is made of a tuple (c⁠i, s(c⁠i)), where c⁠i represents the ICD-10 class and
s(c⁠i) represents the score or likelihood of that classification. The fusion
strategy was implemented as a fusion function F(C⁠d) : C⁠d → P⁠d, where P⁠d
represents the final set of predictions for d and P⁠d ⊆ C⁠d. Technically, P⁠d
should contain the single, final class to assign to a certificate d; how-
ever, we did experiment with some fusion strategies that allowed more
than one class to be assigned to a death certificate (i.e., a ranking of
classes) in order to understand the effect of the requirement to choose

a single class. A number of different variants of the fusion function, de-
noted F⁠i(C⁠d), were evaluated; these are outlined in Table 3.

Both SVMs and rules produce a score for their respective classifica-
tions (rules via the rule _ score and SVMs via the SVM likelihood). These
two different scores were normalised to ensure they were comparable.
Normalisation was done separately from each method (SVMs or rules)
as follows:

1. All the classifier scores on the training set from the method were
sorted into an ordered list. The list was divided into 10 buckets,
b⁠1 … b⁠10 so that each bucket contained a near equal number of clas-
sifier scores.

2. For each classifier score within a bucket b⁠i, we determined whether
the classification was correct or not. This resulted in a probabil-
ity P(correct|b⁠i) for all the classifiers that produced a score in that
bucket. This was done using 10-fold cross validation on the training
set.

3. A function score(c) → P(correct|score(c)) was used to normalise the
score according to which bucket score(c) fell within.

Thus two functions were implemented to map the SVM and rule-based
scores to a comparable likelihood that could be used in the fusion
method.

4.5. Evaluation measures

Three evaluation measures are considered: precision, recall and
F-measure. Precision (also called positive predictive value) is the frac-
tion of positively classified certificates that were a specific cancer⁠6,
while recall is the fraction of actual specific cancer certificates that are
positively classified.⁠7 For Cancer Registries, both precision and recall are
important: a high precision indicates that the system assigns the right
ICD-10 code to a certificate, while a high recall indicates the system
does not miss certificates (particularly important for rare cancers). To
provide a single, overall evaluation measure, precision and recall are
combined into a third evaluation measure, F-measure.⁠8

For analysis and interpretation of the ICD-10 classification results,
results were divided into two sets, constituting common and rare can

6 Precision = True Positives/(True Positives + False Positives).
7 Recall = True Positives/(True Positives + False Negatives).
8 F-measure = 2 * (precision * recall)/(precision + recall).

6



UN
CO

RR
EC

TE
D

PR
OO

F

B. Koopman et al. Artificial Intelligence In Medicine xxx (2018) xxx-xxx

Table 3
Different fusion strategy methods for dealing with multiple positive classification for a sin-
gle death certificate.

F⁠all(C⁠d) Assign all the positive classifications to the certificate. This
strategy is used as a baseline where no fusion is performed.

F⁠max(C⁠d) Assign the positive classification(s) with highest likelihood.
F⁠maxOne(C⁠d) Assign the single positive classification with highest likelihood. (If

there are more than one then take the last class that is
encountered only.)

F⁠th(C⁠d, τ) Assign the positive classifications with a likelihood greater than a
supplied decision threshold parameter, τ. If there are no classes
above the decision threshold then default back to strategy
F⁠max(C⁠d). (τ tuned on the training set and evaluated on the test
set.)

F⁠his(C⁠d) For each positive classification, recalculate the likelihood
P(c) = P(c) * P⁠h(c) where P⁠h(c) represents the likelihood of that
cancer by historic frequency data (calculated based on prevalence
in the training set). Once new likelihood are calculated apply
F⁠max(C⁠d).

F⁠hisOne(C⁠d) For each positive classification, recalculate the likelihood
P(c) = P(c) * P⁠h(c) where P⁠h(c) represents the likelihood of that
cancer by historic frequency data (calculated based on prevalence
in the training set). Once new likelihoods are calculated apply
F⁠maxOne(C⁠d).

F⁠hisInt(C⁠d,
α)

For each positive classification, recalculate the likelihood by
interpolating P(c) = α * P(c) + (1 − α) * P⁠h(c) where P⁠h(c)
represents the likelihood of that cancer by historic frequency data
(calculated based on prevalence in the training set). Once new
likelihoods are calculated apply F⁠max(C⁠d). The α parameter was set
to 0.8.

F⁠ran(C⁠d) Select a random prediction from the list; this is used as a baseline
for comparison.

cers. The set of common cancers was derived by: (i) ranking ICD-10
classes in descending order of prevalence (according to the ground truth
of the testset); and (ii) selecting the top k cancers such that 85% of all
cancer deaths were covered. The set of rare cancers was simply those
ICD-10 classes not contained in the top k common cancers; these consti-
tuted the remaining 15% of cancer deaths. (Fig. 2 shows the breakdown
of common and rare cancers.)

5. Results & analysis

5.1. Overall classification results

Classification results are shown in Table 4. (Results are shown for fu-
sion strategy F⁠maxOne; the results of other strategies are considered in the
next section.)

Common cancers were always easier to classify than rare cancers for
all three methods (rules, SVMs and fusion). Recall was higher than pre-
cision, indicating that false positives were the main type of error in this
classification task. The SVMs method, in particular, exhibited higher re-
call and lower precision, indicating that false positives were even more
prevalent when using SVMs compared to rules.

Generally, rules perform better than SVMs. Although recall was best
when using SVMs, precision was far better when using rules. F-measure
was slightly better for SVMs on common cancers, but F-measure was
considerably better for rules on rare cancers. On all cancers, rules were
best in terms of F-measure.

As indicated, in some situations rules were best while in others SVMs
were best. This finding was the motivation for the hybrid fusion method.
This is confirmed in the empirical findings—the fusion method is more
effective than SVMs and rules. The fusion exhibits a 5% improvement
in F-measure for common cancers, a 1% improvement in F-measure for
rare cancers, and a 6% improvement in F-measure for all cancers, when
compared to the best performing SVMs or rules methods.

5.2. Rules parameter sensitivity for sources of evidence

The rule _ s core for a rule classifier involved combining three differ-
ent sources of evidence: the historic prevalence of the cancer, the sec-
tion of the death certificate where the classification came from and the
morphology-site mappings. These sources were interpolated with three
parameters controlling the influence of each. Fig. 4 shows the sensitiv-
ity for these different parameters and, therefore, the importance of each
source of evidence (as evaluated on the test set).

The plots show that all three sources of evidence were needed for
effective scoring of rules. Importantly, though, the effectiveness (F-mea-
sure) was stable for different settings of the interpolation parameters.
The best overall setting was λ⁠p = 0.5 (prevalence), λ⁠s = 0.3 (section)
and λ⁠m = 0.2 (morph site).

5.3. Fusion analysis

Fusion only occurs when more than one positive classification occurs
for a single death certificate. This begs the question of how often this
occurred and, on average, how many positive classifications were pro-
vided by each method; this is shown in Fig. 5. First, we note that nearly
all death certificates received more than one positive classification (i.e.,
the plot shows very few cases where x-axis is 0 and these are solely due
to the rules, as expected given that rules had lower recall). As the vast
majority of certificates had multiple classifications, the fusion method
was applied, and indeed required, in most cases.

The rules generally provided a small number of positive classifica-
tions (mean 1.5/certificate), whereas the SVMs generally provided more
positive classifications per certificate (mean 7.2/certificate). This large
number of classifications also explained the higher number of false pos-
itives using SVMs. When SVMs and rules were combined in the fusion
method (righthand plot of Fig. 5), the mean number of unique classifi-
cation per certificate was 7.7; thus, rules provide other possible codes
from the SVMs. This shows that fusion was required to resolve the single
underlying cause of death for a certificate.

Table 4
Micro and macro-average effectiveness of different classification methods—SVMs, rules and Fusion—for both common and rare cancers. Statistical significance using paired z-test: ⁠r indi-
cates significantly better than rules, ⁠s indicates significantly better than SVMs and ⁠f indicates significantly better than Fusion.

Common Rare All

Prec Recall Fmeas Prec Recall Fmeas Prec Recall Fmeas

Micro-average
SVMs 0.73 0.91⁠r 0.81 0.24 0.84⁠r,f 0.37 0.61 0.90⁠r 0.73
Rules 0.78⁠s 0.82 0.80 0.74⁠s 0.75 0.75⁠s 0.77⁠s 0.82 0.79⁠s

Fusion 0.80⁠s,r 0.90⁠r 0.85⁠s,r 0.74⁠s 0.79⁠r 0.76⁠s 0.79⁠s,r 0.89⁠r 0.84⁠s,r

Macro-average
SVMs 0.55 0.96⁠r 0.70 0.07 0.90 0.12 0.18 0.91 0.30
Rules 0.80⁠s 0.79 0.77 0.80⁠s 0.76 0.76⁠s 0.79⁠s 0.77 0.76⁠s

Fusion 0.82⁠s 0.87 0.84 0.80⁠s 0.77 0.77⁠s 0.80⁠s 0.81 0.80⁠s

Results shown for fusion strategy F⁠maxOne.
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Fig. 4. Influence of the rule_score parameters controlling the death certificate section, historic prevalence and morphology site mapping. Evaluation on the test set.

Fig. 5. Distribution of the number of positive classifications provided for a death certificate (using death certificate from the test set). Nearly all death certificates received more than one
positive classification. In general, SVMs produced far more positive classifications than rules.

Choosing a single certificate from multiple candidates was done via
eight different fusion methods (previously detailed in Table 3). The ef-
fectiveness of these different strategies is shown in Fig. 6. There were
small variations in effectiveness between the different fusion strategies.
The F⁠all method was used as one of the baselines; it kept all the classifi-
cations for a certificate. This clearly increased recall as multiple classi-
fications were retained (if any were correct the certificate was deemed
correctly classified), but decreased precision as it led to more false posi-
tives. The other baseline is F⁠ran, which selected a random class from the
list of positive classifications. This was clearly the least effective strategy
and thus indicated that a better fusion strategy was required to choose
the best class to apply.

The most effective fusion strategy (in terms of F-measure) was
F⁠maxOne, which chose the single class with the highest score (ties were

broken by choosing the last classification encountered). This strategy
was slightly better in F-measure than F⁠max which did not break ties and
instead kept multiple classifications (whereas, a single underlying cause
of death is required) with the highest scores. Other strategies included
only keeping classifications above a certain threshold (F⁠th). Even tuning
the threshold on the training set to the best setting did not prove ef-
fective, indicating that the likelihood scores should only be interpreted
relative to each other rather than as an absolute measure of confidence.
The final strategies that used prevalence statistics (F⁠his, F⁠hisOne and F⁠hisInt)
did not prove more effective than the simple F⁠maxOne strategy.
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Fig. 6. Effectiveness of different fusion strategies. (Explanation of each fusion strategy provided in Table 3.)

6. Discussion

While rule-based approaches are a common approach for cancer-re-
lated text mining [4], the rules proposed here have a number of novel
aspects. The rules exploit detailed SNOMED CT and ICD-O features,
rather than simple term-based features. This makes them less suscepti-
ble to vocabulary mismatch that can occur when relying on terms alone.
The rules also rely on three separate sources of evidence (prevalence,
section and morphology/site mapping) to provide a confidence score
that allows a single classification to be chosen.

On average, each certificate obtained 7.7 positive classifications. The
requirement to determine a single cause of death meant that the fusion
method was clearly required to handle these multiple classifications.
This is an important component that has often been overlooked by other
studies [14,15,9,10,17]. In these studies, classifier evaluation is done
per-class in isolation (e.g., the performance of individual ICD-10 cancer
classifiers [10]). However, in real-world settings all the classifiers will
be deployed together within a single system, with a need to handle mul-
tiple classifications. In this study, the classifiers are combined and eval-
uated within a single system.

The fusion method had two major benefits. It overcame the problem
of resolving multiple positive classifications and empirically it was sta-
tistically significantly better than rules or SVMs alone. Importantly, it
was effective on both common and rare cancers.

A hybrid method also provides for some flexibility when new classi-
fiers are required. A choice can be made whether a new classifier should
be implemented as a rule or as a SVM. For rare classes, a rule would
be most appropriate. Instead, for common classes, with variation in the
way the class is expressed in natural language, a SVM may be preferred.

The hybrid approach also allows for flexibility between recall and
precision orientated use cases. There are a number of different ways to
achieve this using the proposed system. First, the system can make use
of either SVMs or rules: for cases where the requirement is to find all
cases of a cancer (i.e., high recall) then a SVM may be preferred; for
cases where the requirement is to find only the correct cases for one can-
cer (i.e., high precision) then a rule may be preferred. Second, the F⁠th(C⁠d,
τ) fusion strategy could be used and the τ decision threshold adjusted to
favour either precision or recall tasks. Finally, the ten fold cross valida-
tion method employed for classifier score normalisation used F-measure,
which attributes equal weight to precision and recall. Instead, F⁠β-score
could be used where β controls the relative weight of precision vs. re-
call. A hybrid system thus allows for some flexibility in extension and
deployment of a working system.

In this paper a number of simple fusion strategies were developed.
These were mostly heuristic and more advanced approaches could be

applied. The positive classifications (and associated scores) can be used
as input to a voting model [21], which determines the final classifica-
tion. Another approach is to use the positive classifications and scores as
features to a learning-to-rank [22] model that learns the final ranking.

7. Conclusion

This study provides a system for automatically identifying and char-
acterising cancers—both common and rare—from large collections of
free-text death certificates. This allows Cancer Registries to monitor and
report on cancer mortality in a timely and accurate manner. The system
has a number of components: (i) a natural language processing (NLP)
pipeline that extracts detailed features (e.g., terms, n-grams, SNOMED
CT codes and cancer specific ICD-O properties) from death certificates;
and (ii) a set of machine learning classifiers that exploit these features
to determine the presence of common cancers; (iii) a set of rule-based
methods for better handling rare cancers; and (iv) a fusion method to
combine the machine learning and rule-based methods into a single sys-
tem.

A consequence of having multiple classifiers (both rules or SVMs)
deployed is that a single death certificate nearly always receives mul-
tiple positive classifications. The system handles this via a number of
fusion strategies, with the best strategy being F⁠maxOne, which selects the
single classification with the highest score. More advanced fusion strate-
gies that utilise voting or learning methods could be investigated.

The empirical evaluation on 10 years worth of Australian death cer-
tificates shows that the system using fusion was effective at determining
the type of cancers for both common cancers and rare cancers. The hy-
brid approach using fusion was better than rules or SVMs alone. The hy-
brid approach also provides some flexibility in that either rules or SVMs
can be preferenced for certain tasks or when adding additional classi-
fiers.

The methods and findings of this study are generally applicable; they
can be transferred to other ICD-10 classification tasks beyond cancer
classification and to other sources of medical free-text besides death cer-
tificates.
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