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A B S T R A C T
Automatically generating a report from a patient’s Chest X-Rays (CXRs) is a promising
solution to reducing clinical workload and improving patient care. However, current CXR report
generators—which are predominantly encoder-to-decoder models—lack the diagnostic accuracy
to be deployed in a clinical setting. To improve CXR report generation, we investigate warm
starting the encoder and decoder with recent open-source computer vision and natural language
processing checkpoints, such as the Vision Transformer (ViT) and PubMedBERT. To this end,
each checkpoint is evaluated on the MIMIC-CXR and IU X-Ray datasets. Our experimental
investigation demonstrates that the Convolutional vision Transformer (CvT) ImageNet-21K
and the Distilled Generative Pre-trained Transformer 2 (DistilGPT2) checkpoints are best for
warm starting the encoder and decoder, respectively. Compared to the state-of-the-art (2

Transformer Progressive), CvT2DistilGPT2 attained an improvement of 8.3% for CE F-1,
1.8% for BLEU-4, 1.6% for ROUGE-L, and 1.0% for METEOR. The reports generated by
CvT2DistilGPT2 have a higher similarity to radiologist reports than previous approaches. This
indicates that leveraging warm starting improves CXR report generation. Code and checkpoints
for CvT2DistilGPT2 are available at https://github.com/aehrc/cvt2distilgpt2.

roduction
st X-Ray (CXR) report generation is the task of automatically generating a radiology report from a given

CXR. It has the potential to improve radiologist workflows, reduce the burden of radiology reporting, and
patient outcomes (Thrall et al., 2018). The most popular method of CXR report generation is with a deep
model, specifically, an encoder-to-decoder model as shown in Figure 1 (Pavlopoulos et al., 2021). First,
der extracts visual features from a given CXR. Next, the decoder autoregressively generates each word (or
) of the radiology report based on the previously generated words and the visual features. While current CXR

eneration methods are promising, a significant improvement in diagnostic accuracy is required before clinical
ration. One cause is that the publicly available datasets used to develop CXR report generators (e.g., MIMIC-
hnson et al., 2019a) and IU X-Ray (Demner-Fushman et al., 2015)) are relatively smaller and of lesser quality
eral-domain image captioning datasets (Chen et al., 2015). For example, CXR report generators perform poorly
rrepresented abnormalities within MIMIC-CXR (Liu et al., 2019).
tential solution that has not been thoroughly investigated for CXR report generation is warm starting. Warm
refers to the initialisation of a models parameters with those from a pre-trained model, that is, an identical
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1: Encoder-to-decoder model for CXR report generation. The encoder extracts visual features from
R. Following this, the decoder autoregressively generates each subword of the radiology report based
previously generated subwords and the visual features from the encoder. The example is DICOM
e-bde0afdd-112c0b34-7bc16630-4e384014 from study 50414267 of patient 10000032 from MIMIC-CXR. [BOS]
ginning-of-sentence special token.

hat has been trained on some task that is related to the task of concern (where the related task is otherwise
s a pre-training task). By warm starting a model, the transfer of knowledge from the pre-training task to the
oncern can provide a significant performance boost. Warm starting is particularly effective when the dataset

ask of concern is lacking in size or quality, the domain of the pre-training task is similar to the task of concern,
pre-training dataset is of considerable size or quality (Zhuang et al., 2021).
n warm starting, the collection of learned parameters of a pre-trained model from a specific point during its
is used, otherwise known as a checkpoint. Checkpoints are saved at set intervals during model training, and
kpoint that is selected for further use (in this case, warm starting) is usually the one that attains the best score
osen metric. For an encoder-to-decoder model, either the encoder, decoder, or both can be warm started with
t encoder-only or decoder-only checkpoints. This gives rise to a vast number of different encoder and decoder
int combinations that can be considered.
re are many publicly available checkpoints that can be used for warm starting, with two main types frequently
e. There are checkpoints that have been trained on a large amount of general-domain data. There are also those
n a specific domain on a smaller amount of data than their general-domain counterparts, yet larger than the data
e for the task of concern. For example, BERT is a general-domain checkpoint trained on English Wikipedia and
rpus (Devlin et al., 2019), and ClinicalBERT is a domain-specific checkpoint whose last stage of pre-training
IMIC-III (Alsentzer et al., 2019). Together, English Wikipedia and BookCorpus form a significantly larger
than MIMIC-III, yet the domain of the Intensive Care Unit (ICU) Electronic Health Records (EHRs) from
-III is closer to radiology reports. This makes it difficult to discern which compromise is appropriate when
g a checkpoint for a specific task such as CXR report generation.
is work, we study the impact of warm starting on CXR report generation with the aim of generating reports

more similar to radiologists’ reports than previous approaches. This is motivated by the performance gains that
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Improving Chest X-Ray Report Generation by Leveraging Warm Starting

ttained through warm starting, especially when there are deficiencies with the dataset for a task (Zhuang et al.,
iven the deficiencies associated with MIMIC-CXR and IU X-Ray, transferring knowledge from a pre-trained
ia warm starting may be beneficial. We do this by evaluating various general-domain and domain-specific
ints for the encoder and decoder on the MIMIC-CXR and IU X-Ray datasets (described in Section 5) using
objective metrics (described in Section 7.2). From this evaluation, we determine which checkpoints are most
for warm starting the encoder and decoder of a CXR report generator. Using these checkpoints, we aim to
reports that are more similar to radiologists’ reports than previous approaches in the literature. We also aim
understand what influences the effectiveness of warm starting, such as the domain and size of the pre-training
the model architecture of the checkpoint. This investigation also enables us to give insightful recommendations

to further improve CXR report generation.

kground
chest radiograph or CXR is an indispensable tool for diagnosing diseases of the cardiovascular and respiratory
(Kelly, 2012). While it is the most commonly performed radiologic examination, the CXR is difficult to

t (Kanne et al., 2005). Even though CXRs are analysed by clinicians of all types, radiologists demonstrate the
diagnostic accuracy (Satia et al., 2013). Alarmingly, the workload of radiologists has increased significantly
last couple of decades—mostly due to increases in cross-sectional imaging and understaffing (McDonald

015; Liu et al., 2017). As a consequence, burnout is common amongst radiologists, with fatigue leading
uction in their diagnostic accuracy (Harolds et al., 2016; Krupinski et al., 2010). Radiologists also exhibit
erver and intraobserver variability between their diagnoses (Balabanova et al., 2005). Currently, radiologists
icate their findings to referring clinicians through a report. However, there are inconsistencies in reporting
ith structured reports recommended (European Society of Radiology, 2011). Moreover, failing to report in a

d concise manner—which is exacerbated by fatigue—can also lead to sub-optimal patient care (Siegal et al.,
osshenrich et al., 2021).
p learning is an important tool for medical image analysis, with recent applications to tasks such as
tation (Wang et al., 2022), COVID-19 diagnosis (Li et al., 2021), and disease classification (Li et al., 2023). It

applied to a range of modalities, for example, radiography, ultrasonography, computed tomography, magnetic
ce, and radiomic data. An emerging solution for CXR interpretation is the use of deep learning to automatically

a report from a given CXR (Pavlopoulos et al., 2021). CXR report generation has become the most popular
image captioning task with more datasets than any other modality or anatomical region (Ayesha et al., 2021).
image captioning is a domain-specific version of general-domain image captioning—a topic that has garnered

mount of attention over the last couple of years (Yang et al., 2022; Ji et al., 2021).
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Improving Chest X-Ray Report Generation by Leveraging Warm Starting

report generation has the potential to improve radiologist workflows; by providing a pre-filled radiology
ady for modification, the burden of radiology reporting could be reduced. Such a system could also increase
nostic accuracy of clinicians who have a lower diagnostic confidence (Thrall et al., 2018; Alexander et al.,

hosted system would also be able to serve the radiology demands of an entire health system, as it possesses
ity to remotely interpret multiple CXRs simultaneously in seconds. Moreover, the system would not suffer
traobserver variability or fatigue—which could result in more consistent reporting (Leeuwen et al., 2021).
urrent CXR report generation approaches are promising, a significant improvement in diagnostic accuracy is
before adoption into a clinical setting (Kelly et al., 2019).

entioned previously, the encoder-to-decoder model is the most popular approach to automatic CXR report
on (Pavlopoulos et al., 2021). Visual features from the CXR are extracted with the encoder, were the visual
are a high-level representation of regions in the CXR. During generation, the decoder is conditioned on the
atures via its cross-attention modules and on the previous words of the report via its self-attention modules.
oder is typically a Convolutional Neural Network (CNN), such as a Residual or Densely-connected Network
or DenseNet, respectively) (He et al., 2016; Huang et al., 2017). A CNN includes multiple layers of two-

onal convolutional kernels that have an inductive bias towards local spatial features—a characteristic that makes
uitable for Computer Vision (CV) tasks. For the decoder, a Transformer decoder is most commonly employed
i et al., 2017). A Transformer consists of layers that have multiple attention heads, where attention produces
t based on which inputs it deems important. For Natural Language Processing (NLP), each input corresponds

d. Along with the encoder-to-decoder model, several deep learning techniques have been investigated for CXR
eneration.
CXR interpretation, warm starting the encoder with a general-domain CV checkpoint—typically a ResNet or
et ImageNet-1K checkpoint—provides a significant performance boost over random parameter initialisation
l., 2021; Russakovsky et al., 2015; Pavlopoulos et al., 2021). More recently, DistilGPT2—a general-domain
eckpoint—was used to warm start the decoder (Alfarghaly et al., 2021). However, a direct comparison to a
ly initialised decoder was not provided. While warm starting the encoder has become standard practice, and
arting the decoder is beginning to receive traction, there exists a plethora of general-domain and domain-
CV and NLP checkpoints that have yet to be explored for CXR report generation.
eral-domain CV checkpoints have received a considerable amount of attention as of late (Kolesnikov et al.,
arious pre-training tasks, such as distillation and self-supervised learning, have produced checkpoints that

a significant performance boost on general-domain tasks (Bao et al., 2021; Touvron et al., 2021). Along with
everal prominent CV models and their checkpoints have not been investigated for CXR report generation.
et-1K checkpoints for EfficientNet are one such example; EfficientNet is a CNN that can outperform ResNets
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seNets while consuming drastically fewer parameters (Tan and Le, 2019). Another promising checkpoint is the
ransformer (ViT) and its improvements (Dosovitskiy et al., 2020; Wu et al., 2021; El-Nouby et al., 2021). ViT
sformer that has been trained on large general-domain image classification datasets, where the set of words as

e replaced with a set of patches from an image. Transformers possess several benefits over CNNs, such as no
, a full-receptive field at each layer, and robustness to occlusion (Naseer et al., 2021). More recent checkpoints
distillation have outperformed EfficientNet on ImageNet-1K, namely the Data-efficient image Transformer
Touvron et al., 2021).
le DistilGPT2 has been investigated for CXR report generation, several other prominent NLP checkpoints have
eral-domain NLP checkpoints formed from large corpora, such as BERT and GPT2, have been shown to boost
ance in Natural Language Understanding (NLU) (Devlin et al., 2019) and Natural Language Generation (NLG)
d et al., 2019) tasks, respectively. NLU focuses on comprehending natural language through grammar and
while NLG focuses on constructing natural language based on a given input. As BERT is an NLU checkpoint,
ld assume that it is less suitable than GPT2 for warm starting a decoder tasked with NLG. However, Rothe

020, BERT2BERT vs. BERT2GPT2) disproved this by demonstrating that BERT is more apt than GPT2 for warm
the decoder of a sequence-to-sequence model. Following BERT, several NLU checkpoints were developed
ge biomedical natural language corpora. Warm starting with a biomedical NLU checkpoint instead of BERT
wn to improve performance in biomedical NLU tasks (Lee et al., 2019). As highlighted by Kaur et al. (2021),
arting the decoder of a CXR report generator with a biomedical NLU checkpoint is a promising approach that
s investigation. Hence, an investigation determining if NLG and NLU checkpoints can be effectively fine-tuned
l not only CXR reports but also visual features of CXRs is warranted.

ated work

R report generation
is section, we summarise both foundational and recent automatic CXR report generation approaches in the

e. For a more exhaustive review of CXR report generation, we refer the reader to the survey conducted by Kaur
021). As highlighted by Pavlopoulos et al. (2021), the MIMIC-CXR and IU X-Ray datasets are consistently
he literature to evaluate CXR report generation (both are described in Subsection 5). The following approaches
uated using at least one or both of these datasets.
g et al. (2018) was the first to use an encoder-to-decoder model for CXR report generation—a ResNet-502RNN
ention, where RNN refers to a Recurrent Neural Network.1 The authors employed multi-task learning of
ceforth, the naming convention for encoder-to-decoder models will be the name of the encoder, followed by 2, followed by the name of
er. For example, a model with a CNN encoder and an RNN decoder will be named CNN2RNN.
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port generation (IU X-Ray) and multi-label abnormality classification (ChestX-ray14 abnormality labels).
Net was warm started using an ImageNet-1K checkpoint. The proposed approach outperformed a general-
image captioning approach, where several NLG metrics were used for evaluation. However, many false negative
ality predictions were evident in the generated reports (Wang et al., 2018, Figure 4).
le NLG metrics capture the similarity between the predicted and ground-truth reports, they do not always
diagnostic accuracy (Pavlopoulos et al., 2021). Motivated by this, Liu et al. (2019) proposed the Clinical
(CE) metrics. The CE metrics make use of the CheXpert labeler—a tool developed to extract 14 observations

e reports of the CheXpert dataset (12 of which are abnormalities) (Irvin et al., 2019). For each observation,
Xpert labeler predicts whether each observation was mentioned as positive, negative, or uncertain, or if it was
tioned. For the CE metric, observations are first extracted from the generated and ground-truth reports using
Xpert labeler. Following this, the precision, recall, and F-1 score between the observations of the generated
und-truth reports are calculated to give the scores of the CE metric. Liu et al. (2019) used a reward derived

CE metric for Self-Critical Sequence Training (SCST), in place of an NLG metric. SCST enables the decoder
e-tuned with its own outputs as input—something that is not possible with standard training schema (Rennie
17). This is achieved by using a reinforcement learning algorithm that uses the score between the generated

und-truth reports as the reward. This was able to outperform the approach by Wang et al. (2018) for all tested
etrics. Moreover, using SCST was shown to improve the diagnostic accuracy of the generated reports.
mbed expert knowledge, Zhang et al. (2020) incorporated a Graph Convolutional Network (GCN)—whose
onsisted of abnormalities—into the encoder. This was able to outperform the aforementioned CXR report
on approaches on multiple NLG metrics. The authors also developed a diagnostic accuracy metric based on
h CNN—which showed that the graph CNN improves diagnostic accuracy.
e recently, Lovelace and Mortazavi employed a CNN followed by a series of Transformer layers as the encoder
ransformer decoder. To improve diagnostic accuracy, the CheXpert labeler was used to extract observations
e generated report in a differentiable manner, where the loss between the observations of the generated and
truth reports was added to the training loss. This outperformed multiple approaches that employed an RNN
ecoder, where multiple NLG metrics and the CE metrics were used for evaluation (Lovelace and Mortazavi,

n et al. proposed a ‘memory-driven’ Transformer decoder (R2Gen) (Chen et al., 2020), and later built upon
roposing the ‘Cross-modal Memory Network’ (CMN) (Chen et al., 2021). Using multiple NLG metrics and

metric, it was determined that the proposed approaches were able to outperform several previous CXR report
on approaches in the literature, each of which used an RNN as the decoder (Jing et al., 2019; Li et al., 2018;
l., 2018).
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rghaly et al. (2021) employed CheXNet (Rajpurkar et al., 2017)—a DenseNet-121 ChestX-ray14 checkpoint—
ncoder and a Transformer as the decoder. The decoder was warm started with DistilGPT2, a general-domain
eckpoint. However, cross-attention was not used with each layer of the decoder, rather the embeddings of each
d abnormality of CheXNet were fed as input to DistilGPT2. This method outperformed multiple approaches
ised an RNN as the decoder for multiple NLG metrics.
et al. (2021b) proposed the Contrastive Attention model which compares the visual features of the current
a pool of CXRs that have no abnormalities, where a ResNet-50 warm started with a CheXpert checkpoint was
extract the visual features. Contrastive Attention comprises two modules, ‘aggregate attention’ and ‘difference
’. Aggregate attention finds the normal CXRs from the pool that are closest to the CXR in question. Difference
involves two steps; for the first step, common features between the current CXR and the pool of normal CXRs

d. For the second step, the common features are subtracted from the features of the current CXR to capture
tive information’. This was able to outperform R2Gen, where multiple NLG metrics and the CE metrics were
evaluation.
the aim to imitate the interpretation process of radiologists, Liu et al. (2021a) proposed the a Posterior-and-

nowledge Exploring-and-Distilling approach (PPKED). Along with a CXR, the model consumes embeddings
ost common abnormalities found in the reports from the training set. It also consumes encoded reports
Rs of the training set that have similar visual features to the current CXR. Finally, the model consumes

edding from a knowledge graph that represents the most common abnormalities found in the training set. This
rmed R2Gen, where multiple NLG metrics and the CE metrics were used for evaluation.
ralahzadeh et al. (2021) proposed an approach that generated a report from detected abnormalities in the CXR.
DenseNet-121 extracted visual features from a CXR, where a pre-trained CheXpert checkpoint was used for
arting. Next, an encoder-to-decoder model called the meshed Transformer with memory (2 Transformer)
et al., 2020) predicted the abnormalities from the visual features. The labels for the 2 Transformer were

d from the CXR using the GCN of Zhang et al. (2020). These were fed to BART to generate the report,
ART is a sequence-to-sequence encoder-to-decoder model (Lewis et al., 2020). The final method, named
nsformer Progressive, outperformed R2Gen, where multiple NLG metrics and the CE metrics were used for
on.

checkpoints
ighlighted in the previous subsection, the encoder is typically warm started with a ResNet or DenseNet

et-1K or CXR checkpoint. These are summarised in this section, along with more recent CV models and
ociated checkpoints.

icolson et al.: Preprint submitted to Elsevier Page 7 of 36
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dual and dense aggregations of layer outputs have been found to benefit training. Residual aggregations
the landscape of the loss function and prevent the vanishing and exploding gradient problems (He et al.,
his allows the training of very deep CNNs, called ResNets. The dense aggregations of DenseNet offer direct
e-usage, as deeper layers have access to the outputs of shallower layers (Huang et al., 2017). Following this, Tan
2019) focused on efficiently scaling the depth, width, and input image size of CNNs, forming EfficientNets. As
EfficientNets are able to significantly outperform ResNets and DenseNets on ImageNet-1K, while remaining
er efficient. An EfficientNet as the encoder, warm started or not, has not been investigated for CXR report
on. Domain-specific CXR checkpoints for CNNs also exist in the literature. Rajpurkar et al. (2017) proposed
et, a DenseNet-121 checkpoint for multi-label classification of 14 abnormalities. The checkpoint was formed
ionally training an ImageNet-1K checkpoint on ChestX-Ray14.
e recently, Transformer encoders have been investigated for CV. Dosovitskiy et al. (2020) proposed the Vision
rmer (ViT)—a Transformer checkpoint pre-trained on large general-domain image classification datasets which
input a set of patches from an image. ViT possesses several appealing features for CV, including no pooling, a
ptive field, and robustness to occlusion (Naseer et al., 2021). However, ViT does not posses the same inductive

t makes CNNs an attractive option for medical CV tasks—a bias towards local spatial features. While the self-
weights of a ViT head are able to model the relationship between patches, they do not model the relationship
pixels. This may be detrimental for CXR report generation, as many anatomical features of the chest—such as
onary arteries—are represented in fine detail by the CXR. Moreover, ViT was only able to outperform ResNet

arm starting with checkpoints that have been trained using 30 million or more images (Dosovitskiy et al., 2020,
, ViT-B/32 vs. ResNet50x1 (BiT)). This lead to Dosovitskiy et al. concluding that ViT does not generalise well

ained on insufficient amounts of data.
re are multiple improvements to ViT in the literature that either use a self-supervised pre-training task or
the Transformer to manually inject an inductive bias towards local spatial features. The Convolutional vision
rmer (CvT) replaces the linear layers of each self-attention head with two-dimensional convolutional layers,
roducing an inductive bias to local spatial features into each head. This enabled CvT to outperform ViT on
et-1K (Wu et al., 2021). The Data-efficient image Transformer (DeiT) is an ImageNet-1K checkpoint that
rated knowledge distillation into its set of pre-training tasks. Knowledge distillation involves two models; a
model—called the student—and a larger model—called the teacher. The student is trained to replicate the
cal distribution of the teacher. For DeiT, the teacher was a recent CNN. On ImageNet-1K, DeiT was able to
rm ViT and EfficientNet (Touvron et al., 2021).
Cross-Covariance image Transformer (XCiT) utilises a transposed version of the self-attention mechanism.
ults in the attention weights modelling the relationship between feature channels rather than patches. To model

icolson et al.: Preprint submitted to Elsevier Page 8 of 36
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tionship between local patches, each layer of XCiT employs a two-dimensional convolutional kernel. XCiT
to outperform both EfficientNet and DeiT on ImageNet-1K (El-Nouby et al., 2021). Inspired by BERT, Bao

021) used a self-supervised task, namely Masked Image Modelling (MIM), to form a Bidirectional Encoder
tation from an image Transformer (BEiT). For MIM, the objective for each randomly masked patch is to predict
sponding discrete visual token. The token for each patch was produced by a discrete Variational Auto-Encoder
BEiT was able to outperform both ViT and DeiT on ImageNet-1K.

P checkpoints
etailed in Subsection 3.1, the Transformer is the standard decoder used by recent CXR report generation
. In this subsection, we summarise the Transformer and its checkpoints. Vaswani et al. (2017) proposed the

rmer—a sequence-to-sequence model for NLG. Its layers employ multiple scaled dot-product attention heads,
which model the complex dependencies between its inputs. Due to this, Transformers more efficiently model
ge dependencies between subword tokens than RNNs and Temporal Convolutional Networks (TCNs) (Vaswani
17, Table 1).
ding upon this, checkpoints for the encoder and decoder of the Transformer were formed with self-supervised
ing tasks and extremely large, unlabelled corpora. Masked Language Modelling (MLM) and Next Sentence

on (NSP) are self-supervised pre-training tasks that were used to form Bidirectional Encoder Representations
ansformers (BERT)—a general-domain NLU checkpoint created from BookCorpus (Zhu et al., 2015) and
Wikipedia. As the encoder is non-causal, an output for BERT depends on all input tokens during MLM and
d not just previous tokens. This enabled BERT to outperform previous Transformer checkpoints on multiple
ks (Devlin et al., 2019). The second version of the Generative Pre-trained Transformer (GPT2) is a checkpoint
ecoder of the Transformer. Using language modelling as the pre-training task and the WebText corpus (Radford
19), GPT2 achieved state-of-the-art performance on several zero-shot NLG tasks (Radford et al., 2019).
et al. (2019) proposed DistilBERT, a distilled version of BERT that consumes 40% fewer parameters while

g 97% of its performance. Knowledge distillation was incorporated into the training task, where DistilBERT
student and BERT was the teacher. The authors also produced DistilGPT2 in a similar fashion.
self-supervised tasks used to form BERT (namely MLM and NSP) have been used to form domain-specific
eckpoints. Beltagy et al. (2019) formed a scientific NLU checkpoint from 1.14M documents of Semantic

a corpus of scientific publications. The resulting checkpoint, called SciBERT, outperformed BERT on
cientific NLU tasks. SciBERT also featured a domain-specific vocabulary constructed from Semantic Scholar.
domain-specific checkpoints have been formed from biomedical corpora, particularly PubMed and PubMed

(PMC). As seen in Table 1, a benefit of PubMed and PMC is that they are both larger in size than the corpora

icolson et al.: Preprint submitted to Elsevier Page 9 of 36
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General
(e.g. English Wikipedia)

Biomedical
(e.g. PubMed)

CXR reports
(e.g. MIMIC-CXR)

ICU EHRs
(e.g. MIMIC-III)

: Non-proportional Venn diagram of the vocabulary of each natural language domain. As CXR reports are included
ive Care Unit (ICU) Electronic Health Records (EHRs), the vocabulary of CXR reports is a subset of the vocabulary
HRs. The vocabulary of ICU EHRs is a subset of the vocabulary of biomedical natural language, which is a subset
cabulary of the general domain. An example of a corpus belonging to each domain is also given.

sized for pre-training. The number of examples for Semantic Scholar are those used to pre-train SciBERT (Beltagy
19).

Dataset No. of examples

ImageNet-21K (Deng et al., 2009) 14M images
ImageNet-1K (Russakovsky et al., 2015) 1.3M images
CheXpert (Irvin et al., 2019) 224K images
BookCorpus (Zhu et al., 2015) 0.8B words
English Wikepedia 2.5B words
WebText (Radford et al., 2019) 8M documents
Semantic Scholar (Fricke, 2018) 1.14M papers
PubMed 4.5B words
PMC 13.5B words
MIMIC-III (Johnson et al., 2016) 2M notes

train BERT and GPT2 (BookCorpus, English Wikipedia, and WebText). BioBERT is one such example,
utperformed BERT on several biomedical NLU tasks. However, BioBERT does not have a domain-specific
ary, instead it is inherited from BERT. This may be less than optimal, as medical terms not captured by BERT’s
ary would be represented by multiple subwords (Lee et al., 2019). PubMedBERT improves upon BioBERT
ng a domain-specific vocabulary built from PubMed and PMC. The authors also demonstrate that training
ratch rather than additionally training a general-domain checkpoint such as BERT is best for biomedical NLU
f there is sufficient data (Gu et al., 2020).
re also exists multiple checkpoints formed from MIMIC-III—an Intensive Care Unit (ICU) Electronic Health
(EHR) corpus. As seen in Figure 2, the vocabulary of EHRs is a subset of the vocabulary of biomedical natural
e. ClinicalBERT is an EHR NLU checkpoint formed by further training BioBERT with MLM and NSP on
-III (Alsentzer et al., 2019). A similar checkpoint is BlueBERT, which is formed in two stages: BERT is further

ith MLM and NSP on PubMed. The resulting checkpoint is further trained with MLM and NSP on MIMIC-III,

icolson et al.: Preprint submitted to Elsevier Page 10 of 36
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orming BlueBERT (Peng et al., 2019). Both ClinicalBERT and BlueBERT were able to outperform BioBERT
ral EHR NLU tasks. However, ClinicalBERT and BlueBERT do not have domain-specific vocabularies and
rely on the vocabulary of BERT. Moreover, MIMIC-III is considerably smaller in size than the other corpora
Table 1, raising concerns as to whether ClinicalBERT and BlueBERT can be successfully fine-tuned to CXR

eneration.

tributions
r than determining which checkpoints are most suitable for warm starting the encoder and decoder of a CXR

enerator, we aim to answer the following Research Questions (RQs):

re Transformer encoder CV checkpoints better than CNN checkpoints for warm starting the encoder?

an an NLP checkpoint be effectively fine-tuned to model not only natural language but also visual features?

re NLU checkpoints (e.g., BERT) better for warm starting the decoder than NLG checkpoints (e.g., GPT2)?

re domain-specific checkpoints better for warm starting than general-domain checkpoints?

study differs from previous studies as follows:

e investigate the impact of publicly available checkpoints on CXR report generation.

e investigate CV models and checkpoints not previously considered for CXR report generation, namely,
fficientNet and Transformer encoder CV models.

e investigate NLP checkpoints, specifically, NLU checkpoints such as BERT, and NLG checkpoints such as
PT2.

e investigate domain-specific CV and NLP checkpoints.

e present a case study of the final model that includes the attention weights of its cross-attention heads—to
veal what the model attends to when generating a report.

e present a fine-grained evaluation on individual abnormalities, something that has been lacking in recent
udies.

asets
Medical Information Mart for Intensive Care CXR dataset (MIMIC-CXR) consists of 377,110 CXRs in both
and JPEG formats, and 227,835 English radiology reports associated with 64,588 patients. The reports and

icolson et al.: Preprint submitted to Elsevier Page 11 of 36
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plits of MIMIC-CXR and IU X-Ray from Chen et al. (2020).

set No. of examples Pixel depth Views per example
Training Validation Test

IC-CXR (splits from Chen et al. (2020)) 270,790 2,130 3,858 8-bit 1
-Ray (splits from Chen et al. (2020)) 2,069 296 590 8-bit 2

Encoder Decoder

[BOS] the small right...

the small right apical...

Project

MIMIC-CXR

Encoder DecoderEncoder

Concat

[BOS] there is an ovoid...

there is an ovoid opacity...

Project

IU X-Ray

: CXR report generation framework for (left) MIMIC-CXR and (right) IU X-Ray as in Chen et al. (2020). [BOS]
ginning-of-sentence special token.

ere automatically de-identified (Johnson et al., 2019a,b). Demner-Fushman et al. (2015) released a dataset
X-Ray that consisted of 3,955 English radiology reports and 7,470 CXRs in both DICOM and PNG formats,

oth the reports and CXRs were de-identified automatically. Each report is associated with a single patient. We
reader to the survey conducted by Pavlopoulos et al. (2021, Subsection 2.1) for a more detailed analysis of

-CXR and IU X-Ray.
rder to compare to previous studies, we adopt the dataset splits and labels of Chen et al. (2020) for both MIMIC-
d IU X-Ray.2 For MIMIC-CXR, the splits are formed from 276,778 of the CXRs. A portion of the reports were
ed with multiple CXRs, meaning that they were the label for multiple examples. The subset splits are detailed
2; the 276,778 CXRs are split into 270,790, 2,130, and 3,858 for training, validation, and testing, respectively.

X-Ray, the subsets are formed from 2,955 of the reports, where each report is associated with a frontal and
iew. This means that the model consumes two CXRs per example for IU X-Ray. The 2,955 reports are split
9, 296, and 590 for training, validation, and testing, respectively. A training example for IU X-Ray is shown in
(right); the frontal and lateral views are given as input to the encoder and the label is the ground-truth report

d by a radiologist. For both MIMIC-CXR and IU X-Ray, each patient is included in only one of the subsets.

blem formulation
n a set of 𝑁 CXRs  =

{
𝑋𝑋𝑋0,… ,𝑋𝑋𝑋𝑁−1

} where 𝑋𝑋𝑋𝑖 ∈ ℝ𝐶×𝑊 ×𝐻 and 𝐶 , 𝑊 , and 𝐻 denote the number of
s, the width, and the height of each CXR, respectively, the aim is to generate a report (𝑅̂) whose target is the
MIMIC-CXR and IU X-Ray subsets used by Chen et al. (2020) are available at: https://github.com/cuhksz-nlp/R2Gen.
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kpoints for warm-starting the encoder. Configurations for the same model are separated by ampersands and
. The symbol → indicates that a checkpoint was transferred to a new domain. The configurations for ResNet,
t, and CvT indicate the number of layers; the configurations for EfficientNet indicate the size of the model with
the smallest and B7 being the largest; the configurations for ViT, DeiT, and BEiT indicate the patch size, where

on is the pre-training task for DeiT; the configurations for XCiT are determined as follows: the letter and number
tion before the forward slash indicates the size of the model, Υ indicates that distillation was used as a pre-training
d the number between the forward slash and Υ indicates the width and height of the patch size.

del Configuration/s Image width (𝑊 ) Pre-training data

Net 101 & 152 224 & 224 ImageNet-1K
seNet 121, 169, & 201 224, 224, & 224 ImageNet-1K
XNet DenseNet-121 224 ImageNet-1K → CheXpert
cientNet B4, B5, B6, & B7 380, 456, 528, & 600 ImageNet-1K
BASE 16x16 384 ImageNet-21K → ImageNet-1K

13 & 21 384 & 384 ImageNet-21K
TBASE 16x16 with distillation 384 ImageNet-1K
iT S12/16Υ, S12/8Υ, S24/16Υ, S24/8Υ, & M24/16Υ 384, 384, 384, 384, & 384 ImageNet-1K
TBASE 16x16 384 ImageNet-21K → ImageNet-1K

eckpoints for warm-starting the decoder. The symbol → indicates that a checkpoint was transferred to a new
The Transformer is identical in configuration to DistilBERT, except that its parameters are randomly initialised
an warm-started. PubMed and PubMed Central (PMC) are available at https://pubmed.ncbi.nlm.nih.gov/
ps://www.ncbi.nlm.nih.gov/pmc/, respectively.

Model Cased/uncased Pre-training data Vocabulary

Transformer Uncased – 30K BookCorpus + English Wikipedia
GPT2 Cased WebText 50k WebText
BERTBASE Uncased BookCorpus + English Wikipedia 30K BookCorpus + English Wikipedia
DistilBERTBASE Uncased BookCorpus + English Wikipedia 30K BookCorpus + English Wikipedia
DistilGPT2 Cased WebText 50k WebText
BioBERTBASE Cased BERTBASE → PubMed + PMC 30K BookCorpus + English Wikipedia
SciBERTBASE Uncased Semantic Scholar 30K Semantic Scholar
ClinicalBERTBASE Cased BioBERTBASE → MIMIC-III 30K BookCorpus + English Wikipedia
BlueBERTBASE Cased BERTBASE → PubMed → MIMIC-III 30K BookCorpus + English Wikipedia
PubMedBERTBASE Uncased PubMed + PMC 30K PubMed + PMC

truth report𝑅. The encoder-to-decoder model generates 𝑅̂ in multiple stages; first, the encoder𝐸 produces a set
l features from each of the CXRs  =

{
𝑉𝑉𝑉 0,… ,𝑉𝑉𝑉 𝑁−1

}, where the encoder processes each CXR independently
𝑖 → 𝑉𝑉𝑉 𝑖), 𝑉𝑉𝑉 𝑖 ∈ ℝ𝑆×𝐹 , 𝑆 is the number of spatial positions, and 𝐹 is the number of features for each spatial
. Here, the visual features correspond to the last hidden state of the encoder. For some of the CV models,
arly the CNNs, the spatial positions are distributed over two axes—which are flattened to give 𝑆. Moreover,
e CV models, the spatial position and feature axes of the last hidden state are opposite (i.e. 𝑉𝑉𝑉 𝑖 ∈ ℝ𝐹×𝑆 )
st be transposed. Next, the visual features for each CXR are concatenated along the spatial position axis:
= concat

(
𝑉𝑉𝑉 0,… ,𝑉𝑉𝑉 𝑁−1

)
∈ ℝ𝐷×𝐹 , where concat is the concatenation operation and 𝐷 = 𝑆 × 𝑁 . Next,

al features are projected to the hidden state size of the decoder 𝐻 using learned projection matrix 𝑃𝑃𝑃 ∈ ℝ𝐹×𝐻 :
= 𝑉𝑉𝑉 𝑐𝑜𝑛𝑐𝑎𝑡 ⋅𝑃𝑃𝑃 ∈ ℝ𝐷×𝐻 .
projected visual features are fed to the decoder via a randomly initialised multi-head cross-attention module,
inserted between the masked multi-head self-attention module and the feedforward neural network module

decoder layer (Vaswani et al., 2017, Section 3.1, Decoder). The decoder then generates the report from the

icolson et al.: Preprint submitted to Elsevier Page 13 of 36
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Figure 4: The number of parameters for each checkpoint.

d visual features in an autoregressive fashion (𝐷 ∶ 𝑉𝑉𝑉 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 → 𝑅̂). As shown in Figure 3, 𝑁 = 1 for MIMIC-
d 𝑁 = 2 for IU X-Ray. This means that the concatenation operation is not required for MIMIC-CXR. For IU
the two CXRs for an example correspond to a frontal and lateral view, whereas for MIMIC-CXR, the single
r an example is either a frontal or a lateral view, as in Chen et al. (2020).

thodology

eckpoints
is study, we investigate the publicly available CV checkpoints described in Table 3 and the NLP checkpoints
d in Table 4 for warm starting CXR report generation. The hyperparameters for each model were determined
from their publicly available checkpoint. The training data that formed each checkpoint, the vocabulary of
P checkpoint, and the image width of each CV checkpoint is given. Note that the image height is equal to

ge width for each CV checkpoint. The configuration of each CV model is also indicated. For each decoder
int, if available, we use the uncased version, else, the cased version. This was due to the lowercase format of
nd-truth reports, as described in Subsection 7.4. Finally, the number of parameters for each checkpoint are
Figure 4.

aluation Metrics
n previous CXR report generation studies, we employ several NLG metrics and the CE metrics to evaluate the
d reports (Pavlopoulos et al., 2021). The NLG metrics are word overlap measures that compute a similarity
sed on the number of words shared between the generated and ground-truth reports. The Bi-Lingual Evaluation
udy (BLEU-n) measure computes the word n-gram overlap between the generated and ground-truth reports,
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position embeddings

[BOS] the patient is status post median stern|otomy

Token embeddings

the patient is status post median stern|otomy and
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Q

Q

K

K

V

V

: High-level view of the architecture of CvT-212DistilGPT2. See Figure 1 for a high-level depiction of the CXR
eneration process with an encoder-to-decoder model. Here, it is configured for MIMIC-CXR with the Chen et al.
plits. 𝑄, 𝐾, and 𝑉 are the queries, keys, and values, respectively, for multi-head attention (Vaswani et al., 2017).
es that the linear layers for 𝑄, 𝐾, and 𝑉 are replaced with the convolutional layers depicted below the multi-head
module. [BOS] is the beginning-of-sentence special token. 𝑁𝑙 is the number of layers for each stage, where

𝑁𝑙 = 4, and 𝑁𝑙 = 16 for the first, second, and third stage, respectively. The head for DistilGPT2 is the same used
age modelling. Subwords produced by DistilGPT2 are separated by a vertical bar.

ple, BLEU-3 considers trigrams (Papineni et al., 2002). The Metric for Evaluation of Translation with Explicit
g (METEOR) builds upon BLEU-1 by instead computing the 𝐹𝛽 score between unigrams (where recall is

d higher than precision). METEOR also employs stemming and synonymy matching (Banerjee and Lavie,

Recall-Oriented Understudy for Gisting Evaluation with Longest common subsequence-based statistics
E-L) is the harmonic mean of ROUGE-L Recall and Precision. ROUGE-L Recall is ratio of the length of the
common n-gram shared by the generated and ground-truth reports, to the number of words in the ground-truth
OUGE-L Precision is identical to ROUGE-L Recall, except that the denominator is the number of words in the
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d report (Lin and Och, 2004). The Consensus-based Image Description Evaluation (CIDEr) measure computes
ne similarity between Term Frequency-Inverse Document Frequency (TF-IDF) n-grams of the generated and
truth reports. Cosine similarities are calculated for 1 to 4-grams and their average is returned as the final score.
g TF-IDFs, terms that are infrequent in the corpus are rewarded, while terms that are common (e.g., stopwords)
lised (Vedantam et al., 2015).
ould be noted that the aforementioned word overlap measures do not necessarily capture diagnostic accuracy
t al., 2021). To more effectively evaluate this, we use the CE metrics that was previously employed to evaluate
port generators (Liu et al., 2019; Chen et al., 2020). In place of the CheXpert labeler, we use CheXbert—a
ased approach to extracting the 14 CheXpert observations from a given report. CheXbert demonstrated a

ally significant improvement in performance over the CheXpert labeler (CheXbert had a macro-averaged F-1
provement of 0.055 over the CheXpert labeler), while being 120 times faster (when a GPU is available) (Smit
20). The CE classification scores are calculated as follows; CheXbert first determines the class of each of the

rvations from the generated and ground-truth reports as either positive, negative, uncertain, or no mention.3
e multi-class classification task for each observation is converted into a binary classification task; observations
positive are considered positive results, and observations that are negative, uncertain, or no mention are all

red negative results. Following this, true positives, true negatives, and false negatives are found by comparing
rvations of the generated reports to that of the ground-truth reports. From this, the example-based precision,
nd F-1 scores are found over the 14 observations, while the label-based precision, recall, and F-1 scores are
r each of the 14 observations (Sorower, 2010, Section 7).

R pre-processing and augmentation
owing Chen et al. (2020), we adopted the CXRs in JPEG and PNG formats for MIMIC-CXR and IU X-
pectively, resulting in an 8-bit pixel depth and three identical channels (𝐶 = 3). This was required as each
ckpoint was configured to take three channels as input (even CheXNet). The following pre-processing and
tation steps were then applied to each CXR; first, a given CXR was resized using bilinear interpolation so
smallest side had a length of 𝑊 + 64, where 𝑊 is given in Table 3, and its largest side was set such that
ained the aspect ratio. Next, the resized CXR was cropped to a size of ℝ3×𝑊 ×𝐻 , where 𝑊 = 𝐻 . The crop
was random during training and centered during testing. After this and only during training, the CXR was
round its centre where the angle of rotation was sampled from  [−5◦, 5◦]. Finally, the CXR was standardised
e mean and standard deviation of each channel provided with each CV checkpoint.
14 observations include enlarged cardiomediastinum, cardiomegaly, lung opacity, lung lesion, edema, consolidation, pneumonia,

s, pneumothorax, pleural effusion, pleural other, fracture, support devices, and no finding.
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port pre-processing and generation
rder to compare to previous CXR report generators, we formatted the ground-truth reports identically to Chen
020). This was achieved by allowing a maximum of 60 words per report (words after the 60𝑡ℎ word were
), changing upper-cased letters to lowercase, removing special characters, and replacing words that occurred
three times in the corpus with a special unknown token. During testing, the maximum amount of subwords

decoder could generate was set to 128, as each word could be represented by multiple subwords. Beam search
eam size of four was used during testing when generating the reports. During validation a beam size of one
d (i.e., greedy search).

ne-tuning
her forcing was used for fine-tuning (Williams and Zipser, 1989). Each model was implemented in PyTorch
1.9.0 and trained with 4×NVIDIA P100 16GB GPUs with automatic mixed precision. To select the best epoch
del, we use the highest CIDEr validation score. Due to phenomena such as mild overparameterisation, not
ndom initialisation of a models parameters will lead to a global minimum during gradient descent (Simsek
021). This leads to large performance variability between training runs. To account for this, we performed
training runs for each model. Finally, only models fine-tuned on the MIMIC-CXR training set were tested on
IC-CXR test set and models fine-tuned on the IU X-Ray training set were tested on the IU X-Ray test set. The
g configuration was used to fine-tune each model with teacher forcing:

ategorical cross-entropy as the loss function.

damW optimiser for gradient descent optimisation (Loshchilov and Hutter, 2019). An initial learning rate of
− 5 and 1𝑒 − 4 for the encoder and all other parameters, respectively, following Chen et al. (2020). All other
perparameters for AdamW were set to their defaults.

mini-batch size of 16.

arly stopping with a patience of 10 epochs and a minimum delta of 1𝑒 − 4.

he validation CIDEr score was the monitored metric for early stopping.

atistical analysis
Confidence Intervals (CIs) in Tables 5, 6, 7, and 8 were found with bootstrapping; the test set was resampled
lacement 1,000 times, where the size of each sample was equal to the size of the respective test set (as indicated
1) (Efron, 1979). The 95% CIs were then calculated from the mean scores of each sample. In Subsections 8.4,
8.6 we perform statistical tests on the NLG metric scores where the checkpoint type was the factor and the
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LG metric scores on the MIMIC-CXR test set with the labels of Chen et al. (2020). If available, the 95% confidence
are reported. 𝑛 = 5 indicates the mean over five training runs. * is the training run that scored the highest validation

core.

Natural language generation metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

0.3530 0.2180 0.1450 0.1030 0.1420 0.2770 -
0.3530 0.2180 0.1480 0.1060 0.1420 0.2780 -

ive Attention 0.3500 0.2190 0.1520 0.1090 0.1510 0.2830 -
0.3600 0.2240 0.1490 0.1060 0.1490 0.2840 -

sformer Progressive 0.3780 0.2320 0.1540 0.1070 0.1450 0.2720 -
DistilGPT2 (𝑛=5) 0.3918±0.00008 0.2454±0.00008 0.1685±0.00008 0.1236±0.00009 0.1525±0.00004 0.2846±0.00007 0.3614±0.00052
DistilGPT2* 0.3928±0.00013 0.2478±0.00013 0.1713±0.00013 0.1267±0.00013 0.1545±0.00007 0.2863±0.00012 0.3892±0.00077

ample-based CE metric scores on the MIMIC-CXR test set with the labels of Chen et al. (2020). If available, the
fidence intervals are reported. 𝑛 = 5 indicates the mean over five training runs. * is the training run that scored
est validation CIDEr score.

Model Example-based CE metrics

Precision Recall F-1

R2Gen 0.3330 0.2730 0.2760
CMN 0.3340 0.2750 0.2780
Contrastive Attention 0.3520 0.2980 0.30302 Transformer Prog. 0.2400 0.4280 0.3080
CvT-212DistilGPT2 (𝑛=5) 0.3597±0.0003 0.4122±0.0003 0.3842±0.0002

CvT-212DistilGPT2* 0.3670±0.0004 0.4184±0.0004 0.3910±0.0004

LG metric scores on the IU X-Ray test set with the labels of Chen et al. (2020). If available, the 95% confidence
are reported. 𝑛 = 5 indicates the mean over five training runs. * is the training run that scored the highest

n CIDEr score.

Natural language generation metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

0.4700 0.3040 0.2190 0.1650 0.1870 0.3710 -
0.4750 0.3090 0.2220 0.1700 0.1910 0.3750 -

ive Attention 0.4920 0.3140 0.2220 0.1690 0.1930 0.3810 -
0.4830 0.3150 0.2240 0.1680 0.1900 - 0.3510

sformer Progressive 0.4860 0.3150 0.2240 0.1690 0.1920 0.3730 -
DistilGPT2 (𝑛=5) 0.4620±0.00038 0.2945±0.00030 0.2141±0.00030 0.1650±0.00031 0.1924±0.00022 0.3703±0.00024 0.5868±0.00335
DistilGPT2* 0.4732±0.00045 0.3039±0.00056 0.2242±0.00061 0.1754±0.00065 0.1997±0.00029 0.3758±0.00045 0.6935±0.00495

or each example of the MIMIC-CXR test set and for each of the training runs were the dependent variables.
h test, we used a p-value of 0.05. First, a Levene’s test revealed that the variances of the scores were not
neous. This lead us to using a one-way Welch’s ANOVA to determine if there was a significant difference
the scores of the checkpoints. If a significant difference existed, Games-Howell tests were used to perform a
analysis.

ults and discussion
is section, we first compare the final model shown in Figure 5, whose encoder and decoder is warm started
CvT-21 ImageNet-21K and DistilGPT2 checkpoints, respectively, (i.e., CvT-212DistilGPT2) to current CXR
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enerators in the literature (Subsection 8.1). Next, we evaluate the diagnostic performance of CvT-212DistilGPT2
servations (Subsection 8.2). Following this, the case study in Subsection 8.3 provides insight as to how CvT-

lGPT2 interprets a CXR when generating a report. In Subsection 8.4, we compare the CV checkpoints and
ne which is best for warm starting the encoder. Moreover, we compare the NLP checkpoints in Subsection
determine which is best for warm starting the decoder. We also answer RQ1-RQ4 in Subsections 8.4 and 8.5.
we provide the reader with the limitations of this investigation and several future recommendations.

mparison to current methods
, we compare CvT-212DistilGPT2 to other CXR report generators in the literature that were evaluated on
ls of Chen et al. (2020).4 The NLG metric scores on the MIMIC-CXR test set are shown in Table 5. CvT-
lGPT2 attained the highest mean scores for all NLG metrics. This indicates that the reports generated by CvT-
lGPT2 are more similar to the reports produced by radiologists than those of previous approaches.
the example-based CE scores in Table 6, 2 Transformer Progressive had the highest recall—but also the
recision. The authors of 2 Transformer Progressive speculated that the high false positive rate was due to its
d reports having a longer length on average than the ground-truth reports (Nooralahzadeh et al., 2021, Section
212DistilGPT2 was able to attain the highest precision and the second highest recall—leading to the highest
e. This indicates that CvT-212DistilGPT2 is more diagnostically accurate than previous approaches.
NLG metric scores on the IU X-Ray test set are shown in Table 7. CvT-212DistilGPT2 attained the highest
ores for BLEU-3, BLEU-4, METEOR, and CIDEr. However, Contrastive Attention attained the highest mean
and ROUGE-L scores, while PPKED and2 Transformer Progressive both attained the highest mean BLEU-
This could indicate that the training set size of IU X-Ray is too small for CvT-212DistilGPT2. Alternatively,

nating the visual features of the two CXRs—as shown in Figure 3 (right)—may not be the best multi-source
tion technique, in fact, Libovickỳ et al. (2018) found it to be the worst technique for a Transformer decoder.

rformance on different observations
t, to get an indication of the diagnostic accuracy of CvT-212DistilGPT2 for different abnormalities, we analyse
rmance on each of the 14 CheXpert observations. Scores for the label-based CE metrics are given in Table
with the macro- and micro-averaged scores over the observations. CvT-212DistilGPT2 attained the highest

n and recall for support devices—which is expected as it was one of the most frequent observations in the
set. CvT-212DistilGPT2 performed well for pleural effusion and cardiomegaly, of which both are frequently

d in the training set. For no finding, CvT-212DistilGPT2 demonstrated high precision but poor recall. Oppositely,
high recall and low precision for lung opacity. The performance of CvT-212DistilGPT2 for consolidation,

es for the other CXR report generators in the literature were taken from their respective articles.
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sed CE metric scores of CvT-212DistilGPT2 for each observation on the MIMIC-CXR test set from Chen et al.
The 95% confidence intervals are reported for the averaged scores. The count for each observation indicates the
of times the observation was positive over all of the ground-truth reports of the training and test sets. The positive
ion count for the training set is from Johnson et al. (2019b, Table 2). The positive observation count for the test
hen et al. (2020) was found with CheXbert (Smit et al., 2020).

Observation Count CvT-212DistilGPT2

Train Test Precision Recall F-1

No Finding 75,163 323 0.681 0.173 0.276
Support Dev. 65,637 1,345 0.795 0.734 0.763
Pleural Effus. 53,188 1,056 0.454 0.692 0.548
Lung Opacity 50,916 1,392 0.227 0.551 0.321
Atelectasis 45,088 841 0.306 0.388 0.342
Cardiomegaly 39,094 1,271 0.512 0.591 0.549
Edema 26,455 563 0.224 0.468 0.303
Pneumonia 15,769 165 0.097 0.296 0.146
Consolidation 10,487 176 0.063 0.239 0.099
Pneumothorax 9,317 75 0.133 0.455 0.206
Enlarged Card. 7,004 320 0.066 0.093 0.077
Lung Lesion 6,129 199 0.010 0.167 0.019
Fracture 3,768 148 0.007 0.333 0.013
Pleural Other 1,961 122 0.016 0.167 0.030

Macro-average - - 0.256±0.0013 0.382±0.0003 0.307±0.0006

Micro-average - - 0.398±0.0004 0.497±0.0004 0.442±0.0003

cardiomediastinum, lung lesion, fracture, and pleural other was poor—likely due to the infrequency of these
tions in the training set. This was also the case with previous CXR report generators, for example, the approach
t al. (2019, Table 3) performed poorly on the rarer abnormalities of MIMIC-CXR. This suggests that the class
ce of the observations in the MIMIC-CXR training set leads to poor performance. Interestingly, recall was
or all observations except no finding and support devices, as reflected by the macro- and micro-averaged scores
ision and recall. This shows that CvT-212DistilGPT2 has a higher false positive rate but a lower false negative

se study
, we observe the attention weights of a subset of the cross-attention heads of CvT-212DistilGPT2 as they
ely generate a word (or subword) for the case study in Figure 6 (where subwords are separated by a vertical
e cross-attention layers in the decoder are the means of conditioning the report generation process on the visual
of the CXR, where each layer comprises multiple cross-attention heads. Cross-attention heads are parallel

thin the layer that compute an output based on the relationship between its two inputs, in this case, the visual
and the previously generated words. Here, the visual features are a high-level representation of the regions of
. For a cross-attention head, a high-level representation of both the visual features and words are compared

r dot product, giving the attention weights. A higher weight indicates a higher similarity between the CXR
nd the word. Through this, we can get an indication of what words and CXR regions the model has learnt to
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y or incorrectly relate to one another. This case study was selected to highlight both strengths and weaknesses
odel and of the current paradigm of CXR report generators. It should be noted that higher layers (e.g., Layer

onsidered higher-level representations of lower layers (e.g., Layer 1)—which typically model more primitive
ships. Because we are interested in the anatomical aspects of the CXR, we direct the readers attention to the
ayers.
paring the generated and ground-truth reports, CvT-212DistilGPT2 correctly predicted that the patient has had
y Artery Bypass Graft (CABG) surgery via a median sternotomy incision, although it is unclear from both
rated and ground-truth reports which of the coronary arteries were bypassed. It can be seen that the heads
to the vascular clips when generating the subword ‘cab|’—a key indicator of CABG. Next, CvT-212DistilGPT2

y identified the left-side pacemaker with its leads terminating in the right atrium and ventricle. Note that in
nd-truth report, it was mentioned that the positioning of the leads remained ‘unchanged’—something that is
ble for CvT-212DistilGPT2 to infer as it has not observed the previous study. It can be seen that Head 12 of
and Head 1 of Layer 1 attend to the pacemaker when generating the subword ‘pac|’. However, not one of the
d heads attend to the lead in the right atrium when generating the subword ‘|rium’.

-212DistilGPT2 indicated mild cardiomegaly with the phrase “a moderate enlargement of the cardiac silhouette”.
r, CvT-212DistilGPT2 specified that the mild cardiomegaly was unchanged, referring to a previous, unobserved
his is because CvT-212DistilGPT2 has learnt to often describe abnormalities in the context of disease progression
he ground-truth reports of the training set frequently referring to previous studies. When generating the word
tte’, Head 6 of Layers 4 and 5 attend to regions of the cardiac silhouette. Moreover, CvT-212DistilGPT2 missed
ened and decreased curvature of the aortic arch indicating that the aorta is unfolded. CvT-212DistilGPT2 also
ed that the mediastinal and hilar contours are similar, which is not a valid interpretation due to the word similar.
of the heads in Figure 6 attends to the right or left hilar points when generating the word ‘hilar’.

-212DistilGPT2 also incorrectly predicted no pulmonary vascular congestion, while it is reported as mild and
ovement over a previous study in the ground-truth report. Head 7 of Layer 3 does pay some attention to the
ary vessels when generating the subword ‘|cul|’. However, it is difficult to determine an increased prominence
ulmonary vessels without a prior normal CXR of the patient. Lastly, CvT-212DistilGPT2 mentions which

alities were not present in the CXR; no focal consolidation, pleural effusion, or pneumothorax. Some of the
d heads attend to regions of the pleura when generating the subword ‘|usion’, especially Head 6 of Layer
looking for signs of pneumothorax, the heads did not attend to the position of the trachea, however, some
was paid to each of the hemidiaphragms.
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und truth
ent is status post median sternotomy and cabg. left-sided pacemaker device is noted with leads
inating in the right atrium and right ventricle unchanged. the heart remains mildly enlarged but
le. the aorta is unfolded. there is mild pulmonary vascular congestion which is improved when
pared to the prior exam. no new focal consolidation.

erated
patient is status post median stern|otomy and cab|g. left|-|sided dual|-|ch|amber pac|emaker
ce is noted with leads terminating in the right at|rium and right vent|ric|le. moderate
rg|ement of the cardiac silhouette is unchanged. the medi|ast|inal and hilar cont|ours are
lar. pulmonary vas|cul|ature is not eng|or|ged. no focal consolidation ple|ural eff|usion or
um|oth|or|ax is present.
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CXR

Low cross-attention weight High cross-attention weight

: Case study of CXR a0578edb-12a640ca-1ddab351-089c4d4c-00bb6f19 from study s54265960 of patient
99 from the MIMIC-CXR test set. The ‘ground-truth’ report was produced by a radiologist, while the ‘generated’
as produced by CvT-212DistilGPT2. The CXR displayed has been pre-processed for testing. Subwords produced
GPT2 are separated by a vertical bar. Each cross-attention weight matrix is min-max normalised and then scaled
wise using exp

(
1 − 𝑎−1

)
for ease of interpretation (where 𝑎 is an attention weight). A beam size of one (i.e., a

earch) was used to produce the report. One cross-attention head from each layer of DistilGPT2 was selected for

st checkpoint for warm starting the encoder
is subsection, we determine which CV checkpoint is best for warm starting the encoder. To succeed, the
ing task of the CV checkpoint must be transferable to that of extracting salient visual features from CXRs. To
is investigation more tractable, the following methodology was adopted; for training, we use the 50K subset
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CIDEr

: NLG metric scores for each CV checkpoint when warm starting the encoder. DistilGPT2 was used to warm
decoder. The black dots and the error bars indicate the mean and standard deviation over the training runs,

ely.

IC-CXR’s training set described in Subsection 8.6; we make the assumption that the best CV checkpoint is
dent of the NLP checkpoint used to warm start the decoder. Following this, the decoder of each encoder-to-
model is warm started with DistilGPT2. Eight training runs are performed for each CV checkpoint to account

variability introduced by randomly initialising the parameters of 𝑃𝑃𝑃 and the cross-attention modules of the
. The scores for the NLG metrics are shown in Figure 7, while the label-based CE metrics are shown in Figure
e-way Welch’s ANOVA revealed a statistically significant difference between the NLG metric scores of each
kpoint, showing that they have an effect on performance.
-13 attained the highest mean BLEU-4 score; CvT-21 the highest mean METEOR and CIDEr scores; BEiT the
mean ROUGE-L score; ResNet-101 the highest macro-averaged precision; DeiT the highest macro-averaged
d micro-averaged precision and recall. Between the two best performing checkpoints, namely, CvT-21 and
vT-21 attained higher mean BLEU-4, METEOR, ROUGE-L, CIDEr, and macro-averaged precision scores,
eiT achieved a higher macro-averaged recall and micro-averaged precision and recall. However, Games-Howell
ealed no significant difference between their NLG metric scores. As CvT-21 and DeiT cannot be separated
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: Label-based CE scores for each CV checkpoint when warm starting the encoder. DistilGPT2 was used to warm
decoder. The black dots and the error bars indicate the mean and standard deviation over the training runs,

ely.

their performance, we instead select based on their parameter efficiency. Hence, we select CvT-21 over DeiT
sumes drastically fewer parameters (31.6M vs. 86M).
paring the CNN ImageNet-1K checkpoints, EfficientNet (B6 and B7) attained the highest scores for each
except for macro-averaged precision). In fact, Games-Howell tests revealed a significant difference between
EOR scores of EfficientNet-B7 and each of the DenseNets. This is likely due to the improvements proposed

nd Le (2019) to scale the depth, width, and input image size of the network to more efficiently use the networks
ers. Next, we compare the DenseNet-121 ImageNet-1K checkpoint to its domain-specific equivalent, namely
et. CheXNet demonstrates a marked improvement, attaining higher mean scores for all metrics with Games-
tests revealing a statistically significant difference between their NLG metric scores.
wer to RQ4 (for CV checkpoints): CheXNet demonstrates that there is a clear advantage to warm starting the
with a domain-specific CV checkpoint over a general-domain CV checkpoint.
lacked performance, attaining lower mean scores for all metrics (except macro-averaged precision) than

tNet-B5, B6, and B7. Moreover, Games-Howell tests confirmed a significant difference between the METEOR
f EfficientNet-B5, B6, and B7 versus ViT. Its hard to pinpoint the cause of the performance difference as
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riables exist, such as the number of parameters and the training dataset. Another reason could be due to ViTs
to model intra-patch visual features with its self-attention weights. The performance of DeiT was on par
cientNet, with DeiT attaining a higher macro- and micro-averaged precision and recall than EfficientNet-
reas EfficientNet-B7 attained higher mean BLEU-4, METEOR, ROUGE-L, and CIDEr scores. Additionally,
Howell tests revealed no significant difference between the NLG metric scores of the two. The performance of
as also on par with EfficientNet, with BEiT attaining higher mean BLEU-4, METEOR, ROUGE-L, and micro-
d precision than EfficientNet-B7, whereas EfficientNet-B7 attained higher CIDEr, macro-averaged precision
ll, and micro-averaged recall. Moreover, Games-Howell tests revealed a significant difference between only the
-L scores of BEiT and EfficientNet-B4, B5, and B6 (in favour of BEiT), but not for B7. While having a similar

ture to ViT, the pre-training tasks of DeiT and BEiT enable them to perform comparatively to EfficientNet.
lly, we analyse adaptations of the Transformer, namely XCiT and CvT. XCiT-S-24-P8 attained higher mean
-L and CIDEr scores than the EfficientNets, as well as a higher macro- and micro-averaged precision. However,

Howell tests only revealed significant difference for ROUGE-L between EfficientNet (B4, B5, and B6), but not
in favour of XCiT-S-24-P8). Moreover, EfficientNet-B6 and B7 attained higher mean BLEU-4 and METEOR
s well as a higher macro- and micro-averaged recall. CvT-21 attained higher mean scores than the EfficientNets
etrics, indicating that CvT-21 is the only Transformer-based CV checkpoint that can consistently outperform

tNet. However, Games-Howell tests revealed no statistically significant difference between the NLG metric
f EfficientNet-B7 and CvT-21.
wer to RQ1: Currently, it seems that Transformers require pre-training with a task such as MIM or distillation
rm comparatively to CNNs. However, the performance of CvT suggests that incorporating convolutional layers
Transformer alleviates it from having to learn the inductive bias of local spatial feature processing, allowing it
rform EfficientNet.

st checkpoint for warm starting the decoder
subsection is identical in methodology to the previous subsection, except that now we determine which NLP
int is best for warm starting the decoder. A ResNet-101 ImageNet-1K checkpoint was employed to warm start
der of each encoder-to-decoder model following the assumption that the best NLP checkpoint is independent
V checkpoint used to warm start the encoder. To succeed, the pre-training task of an NLP checkpoint must be
ble to that of generating reports from visual features. The scores for the NLG metrics are shown in Figure 9,

e label-based CE metrics are shown in Figure 10. A one-way Welch’s ANOVA revealed a statistically significant
ce between the NLG metric scores of each checkpoint, showing that they have an effect on performance.
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: NLG metric scores for each NLP checkpoint when warm starting the decoder. A ResNet-101 ImageNet-1K
int was used to warm start the encoder. The black dots and the error bars indicate the mean and standard

over the training runs, respectively.

ilGPT2 attained the highest mean BLEU-4, METEOR, ROUGE-L, and CIDEr scores while GPT2 attained the
macro-averaged recall and micro-averaged precision and recall. Furthermore, Games-Howell tests revealed a
ally significant difference between the scores of both GPT2 and DistilGPT2 versus the remaining checkpoints

METEOR and CIDEr, indicating that GPT2 and DistilGPT2 are the most suitable checkpoints for warm
the decoder. Comparing GPT2 to DistilGPT2, Games-Howell tests revealed no significant difference between
G metric scores, showing that distilling GPT2 to 66% of its parameters has no effect on performance.5 Due to
eter efficiency, we select DistilGPT2 over GPT2 as the best checkpoint for warm starting the decoder.

wer to RQ2: GPT2 demonstrated that an NLP checkpoint can be effectively fine-tuned to model not only
anguage, but also visual features (i.e., a pre-trained NLP checkpoint is able to outperform a randomly initialised
).
paring BERT and GPT2, Games-Howell tests revealed a significant difference between their METEOR,
-L, and CIDEr scores (in favour of GPT2). GPT2 also attained higher label-based CE scores than BERT. This

is opposite to that of Rothe et al. (2020, BERT2BERT vs. BERT2GPT2); however, the encoder in their case was an
es-Howell tests also revealed no significant difference between the NLG metric scores of BERT and DistilBERT, again demonstrating
ation does not impact performance.
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0: Label-based CE scores for each NLP checkpoint when warm starting the decoder. A ResNet-101 ImageNet-1K
int was used to warm start the encoder. The black dots and the error bars indicate the mean and standard deviation
training runs, respectively.

eckpoint rather than a CV checkpoint. Some of the main differences between BERT and GPT2 include their
of parameters (110M for BERT vs. 124M for GPT2), their training data (BookCorpus and English Wikipedia
T vs. WebText for GPT2), their vocabulary size and source (30K formed from BookCorpus and English
ia for BERT vs. 50K formed from WebText for GPT2), and their token embeddings (BERT uses WordPiece
et al., 2019) while GPT2 uses byte-pair encodings (Radford et al., 2019)). However, we hypothesise that these
ces are relatively minor and have only a slight effect on the performance difference. Instead, we speculate that
-training tasks are the main cause of the performance difference and suggest that GTP2’s language modelling
ing task is better than BERT’s MLM and NSP pre-training tasks for CXR report generation.

wer to RQ3: GPT2 is able to outperform BERT. Our hypothesis as to why this is the case is due to their
t pre-training tasks (MLM and NSP vs. language modelling).
ngst the domain-specific NLU checkpoints, PubMedBERT performed best. Games-Howell tests revealed
cant difference between the METEOR and ROUGE-L scores of BERT and PubMedBERT (in favour of
BERT). PubMedBERT also attained higher label-based CE metric scores. This indicates that a biomedical
eckpoint is better than a general-domain NLU checkpoint for warm starting the decoder. Opposite to
BERT, BioBERT lacked performance, with Games-Howell tests revealing a significant difference between all
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1: Different subset sizes of MIMIC-CXR’s training set. ResNet-1012DistilBERT was used for the comparison. The
ts and the error bars indicate the mean and standard deviation over the training runs, respectively.

LG metric scores of BioBERT and PubMedBERT (in favour of PubMedBERT). Additionally, PubMedBERT
higher label-based CE metric scores. Unlike BioBERT, PubMedBERT was pre-trained from scratch on
and PMC and has a domain-specific vocabulary, both of which are cited as the reason why PubMedBERT

rms BioBERT on biomedical NLU tasks (Gu et al., 2020).
the EHR NLU checkpoints, BlueBERT was outperformed by both BERT and PubMedBERT, attaining lower
ores for each metric (except for ROUGE-L, where BlueBERT attained a higher mean ROUGE-L score than
6 Furthermore, Games-Howell tests revealed a significant difference between all the NLG metric scores of
RT and PubMedBERT, and a significant difference between the METEOR and CIDEr scores of BlueBERT
RT. Several factors could be causing the deficit in performance to the general-domain and biomedical NLU
ints. Unlike BERT or PubMedBERT, ClinicalBERT and BlueBERT are not pre-trained from scratch, rather,
olves three stages of pre-training, as shown in Table 4. Moreover, MIMIC-III is significantly smaller than the
used to pre-train BERT and PubMedBERT (Table 1). Finally, both ClinicalBERT and BlueBERT do not have
specific vocabularies.
wer to RQ4 (for NLP checkpoints): While PubMedBERT outperformed BERT, the EHR NLU checkpoints—
re closer in domain to CXR reports—did not. This is more likely due to factors other than the choice of domain,
the size of the pre-training datasets and the use of domain-specific vocabularies.
BERT outperformed ClinicalBERT, attaining higher mean scores for each metric, with Games-Howell tests revealing a significant
between their NLG metric scores.
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. of training examples
rder to make the experiments in Subsections 8.4 and 8.5 tractable, we sought to find a subset size of the MIMIC-
ining set that was large enough that it produced similar results to the full training set, yet small enough to reduce
time. Hence, we investigate different subset sizes of the MIMIC-CXR training set, as presented in Figure 11.

h size, each training run used the same random sample (without replacement) of the MIMIC-CXR training
selected ResNet-1012DistilBERT as the model. Eight training runs were conducted for each training size, where
cher forcing was employed during fine-tuning. A one-way Welch’s ANOVA revealed a significant difference
the scores of each NLG metric over the different sizes. Games-Howell tests revealed a significant difference
the scores for 10K and 20K and the full training set. This was not the case with 50K and 100K and the full

set. Hence, we use the 50K subset of MIMIC-CXR’s training set in Subsections 8.4 and 8.5, as it is the smallest
ze with no statistically significant difference to the full training set.

itations and future recommendations
re are several limitations of our work which lead to recommendations we propose for future investigation:

e did not consider every combination of encoder and decoder checkpoint, instead, we assumed that the choice
encoder does not impact the decoder and vice versa. This assumption may be wrong and could be considered

r future investigation.
e did not consider CXRs in DICOM format. The formats that we used for the CXRs (JPEG and PNG) meant that
e pixel depth was 8-bit, rather than the 12-bits available from the DICOM format. Reducing the quantisation
ror could improve performance.
ownsampling each CXR to 384×384 increases the risk of missing fine details. Hence, the downsampled CXRs
ould be closer in resolution to the original CXRs.
ith MIMIC-CXR, reports are typically generated from only a single CXR of a study. However, studies with
ultiple CXRs often have multiple views. Certain abnormalities are easier to detect when interpreting both
ontal and lateral views simultaneously. A CXR report generator that can accommodate a variable number of
XRs may improve performance.
adiologists frequently reference previous studies of a patient in the ground-truth reports. We hypothesise that
serving both the generated reports and the visual features of previous studies will further improve CXR report
neration. This will be especially important for monitoring disease progression.
otivated by Section 8.2, we hypothesise that an under or over sampling technique could reduce the impact of
e class imbalance of the MIMIC-CXR training set.
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here also exists more recent CV checkpoints which are not yet open-source that may outperform CvT. For
ample, a ViT checkpoint was proposed that had the image patches as input replaced with the output of a small
mber of stacked stride-two 3×3 convolutions (ViT𝑐). By injecting this inductive bias towards local spatial

ature processing, ViT𝑐 is able to outperform ViT and EfficientNet (Xiao et al., 2021).
s demonstrated by CheXNet outperforming the DenseNet-121 ImageNet-21K checkpoint, a domain-specific
vT-21 checkpoint may be more apt for warm starting the encoder than the CvT-21 ImageNet-21K checkpoint.
he recent rise of Large Language Models (LLMs) has produced Transformer decoder checkpoints with
nsiderable capabilities. An investigation into LLMs as the decoder for CXR report generation should be
nsidered.

his study indicates that the following modifications to DistilGPT2 checkpoint should be investigated: i) pre-
aining on PubMed and PMC from scratch before distillation, and ii) using a domain-specific vocabulary.
n important consideration is the level of diagnostic accuracy that a CXR report generator must attain before
trospective or prospective clinical trials are deemed appropriate. Understanding the diagnostic accuracy of
mans will help establish this, for example, a study by Satia et al. (2013, Table 1) found that the diagnostic
curacy of clinicians ranged from 66% to 83% depending on expertise. As demonstrated in Table 8, current
XR report generators demonstrate poor diagnostic accuracy for multiple abnormalities, indicating that further
search and development is required before reaching such a threshold.
e were not able to include Receiver Operating Characteristics (ROC) curves. In future work, we will consider
OC curves to provide a more thorough investigation.
etrics that evaluate the clinical decisions inferred from the generated reports should be considered—as clinical
cisions ultimately dictate patient care.

nclusion
his study, we investigate warm starting the encoder and decoder of a CXR report generator with recent

available CV and NLP checkpoints. Our investigation led us to the CvT-21 ImageNet-21K checkpoint—
ossesses the advantages of both CNNs and Transformers—as the best CV checkpoint for warm starting the
. Moreover, we find that DistilGPT2—a distilled general-domain NLG checkpoint—is best for warm starting
der. The results indicate that the reports generated by CvT-212DistilGPT2 are more diagnostically accurate and
igher similarity to radiologist reports than previous approaches. Compared to 2 Transformer Progressive,
DistilGPT2 attained an improvement of 8.3% for CE F-1, 1.8% for BLEU-4, 1.6% for ROUGE-L, and 1.0% for
R.
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investigation also reveals several important findings about warm starting the encoder and decoder of a CXR
enerator. The first is that a Transformer-based CV checkpoint that incorporates convolutional layers is better
NN checkpoint for warm starting the encoder. Moreover, an NLP checkpoint can be effectively fine-tuned to
ot only natural language but also visual features. Furthermore, we find that GPT2 is better for warm starting
der than BERT. Finally, we found that domain-specific checkpoints are better for warm starting than general-
checkpoints—if the size and quality of the pre-training dataset is sufficient. In general, the best checkpoint
k depends on multiple variables; for example, the pre-training task, the size and quality of the dataset, the
ary, and the model architecture.
results indicate that leveraging warm starting improves CXR report generation. The future outlook on CXR
eneration is promising; a CXR report generator that has been clinically validated through retrospective and
tive trails—that also meets regulatory requirements—could have a significant impact on radiology. Automatic
port generation could provide more consistent and reliable reporting, as well as cheaper running costs. It
lso reduce the burden placed on overworked radiologists. A secondary use for such a technology could
nduct a retrospective analysis on previous reports, which in turn could be used for other tasks such as
answering or population research. CvT-212DistilGPT2 and its MIMIC-CXR checkpoint are available at

//github.com/aehrc/cvt2distilgpt2.
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Highlights:
● The  reports  generated by CvT2DistilGPT2 are more diagnostically accurate and have a

higher similarity to radiologist reports than previous approaches
● A Transformer-based CV checkpoint that incorporates convolutional layers (i.e., the

Convolutional vision Transformer (CvT)) is better for warm-starting the encoder than a
CNN checkpoint (ResNet, DenseNet, and EfficientNet).

● An NLP checkpoint can be effectively fine-tuned to model not only natural language but
also visual features.

● GPT2 is better for warm-starting the decoder than BERT.
● Domain-specific checkpoints are better for warm-starting than general-domain

checkpoints–if the pre-training dataset is sufficient.
● In general, the best checkpoint for a task depends on multiple variables; for example, the

pre-training task, the size and quality of the dataset, the vocabulary, and the model
architecture.
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