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Pseudo Relevance Feedback (PRF) is known to improve the e�ectiveness of bag-of-words retrievers. At the same time, deep language

models have been shown to outperform traditional bag-of-words rerankers. However, it is unclear how to integrate PRF directly with

emergent deep language models. This article addresses this gap by investigating methods for integrating PRF signals with rerankers

and dense retrievers based on deep language models. We consider text-based, vector-based and hybrid PRF approaches and investigate

di�erent ways of combining and scoring relevance signals. An extensive empirical evaluation was conducted across four di�erent

datasets and two task settings (retrieval and ranking).

Text-based PRF results show that the use of PRF had a mixed e�ect on deep rerankers across di�erent datasets. We found that

the best e�ectiveness was achieved when (i) directly concatenating each PRF passage with the query, searching with the new set of

queries, and then aggregating the scores; (ii) using Borda to aggregate scores from PRF runs.

Vector-based PRF results show that the use of PRF enhanced the e�ectiveness of deep rerankers and dense retrievers over several

evaluation metrics. We found that higher e�ectiveness was achieved when (i) the query retains either the majority or the same weight

within the PRF mechanism, and (ii) a shallower PRF signal (i.e., a smaller number of top-ranked passages) was employed, rather than a

deeper signal. Our vector-based PRF method is computationally e�cient; thus, this represents a general PRF method others can use

with deep rerankers and dense retrievers.
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1 INTRODUCTION

Pseudo Relevance Feedback (PRF) assumes the top-ranked passages from any phase of retrieval contain relevant signals

and thus modi�es the query by exploiting these signals in a bid to reduce the e�ect of query-passage vocabulary

mismatch and improve search e�ectiveness [3]. Previous research has considered PRF in the context of traditional

bag-of-words retrieval models such as probabilistic [53], vector space [54], and language models [24, 36, 73]. PRF
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methods such as Rocchio [54], relevance models [24], RM3 [34], and KL expansion models [73] analyse the top-ranked

passages to expand the query or to modify the query weights. The query and the passage are represented as either

text or vectors, hence the categorisation of text-based and vector-based PRF approaches hereafter. Empirically, these

approaches improve the initial retrieval e�ectiveness [3].

Recently, Transformer [57] based deep language models [9, 12, 49, 50, 64] have been adopted with promising results in

information retrieval [16, 65]. Seminal in this context is the work of Nogueira and Cho [46] who �ne tuned BERT [12] as

a reranker on top of BM25. In this article, we investigate how to integrate PRF signals, e�ective for bag-of-words models,

with deep language model rerankers, e.g. BERT (other models such as RoBERTa [33], query likelihood models [15, 77, 79]

can be applied as well), and dense retrievers, (speci�cally ANCE [60], RepBERT [74], TCT-ColBERT V1 [30], TCT-

ColBERT V2 HN+ [31], DistilBERT KD [17], DistilBERT Balanced [18], and SBERT [51]); extensive evaluations are done

towards the proposed PRF methods along the side.

Our experiments investigate two alternative paths to integrate PRF signals with deep language models: text-based

and vector-based. The text-based PRF approach is an obvious direction as the concatenation of the query text and the

PRF passages text is used as the new formulated query to feed into the deep language model (e.g., BERT). However, this

approach has two signi�cant impediments: (i) the lengthy concatenated text would often exceed the allowed input size

(input vector length) of these deep language models [14, 63] and (ii) it is computationally expensive or infeasible as

it requires additional deep language model inferences at query time [19, 32]. To solve the �rst challenge, we propose

three di�erent text handling methods to generate text partitions from the full concatenated text such that each of the

partitions is within the length limit of the deep language models. Furthermore, because we split the concatenated text

into partitions, we also propose three di�erent score aggregation methods (Average, Borda, and Max) to aggregate the

scores from each partition to calculate the �nal scores for each passage.

To address the computational complexity challenge, we use model pre-generated embeddings to represent text [22,

48, 60, 74]. Query latency is reduced to the time of generating the query embeddings because the passages embeddings

are pre-generated. In the context of PRF, we further utilise these pre-generated passages embeddings to e�ciently

integrate the relevance signals while eliminating the input size limit of deep language models, which we refer to as

vector-based PRF approach. Each feedback passage is pre-generated as embeddings (vectors) in this approach. We adopt

two di�erent vector fusion methods (Average and Rocchio) to integrate the feedback vectors into the query vectors.

The Rocchio method has two parameters: the query vector and the feedback passage vector weights. We empirically

investigate the in�uence of query and feedback passages through weighting within the Rocchio PRF approach.

To evaluate these PRF approaches, we use the TREC Deep Learning Track Passage Retrieval Task (TREC DL)

2019 [6] and 2020 [7], the TREC Conversational Assistance Track 2019 (TREC CAsT) [11], the Web Answer Passages

(WebAP) [21], and the DL HARD [39]. TREC CAsT and WebAP are used for the passage retrieval task rather than their

original tasks (e.g., for CAsT, we do not consider the multi-turn conversational relationship between queries).

For the text-based PRF approach, we �nd that our models signi�cantly outperform the baselines across several

evaluation metrics on TREC DL 2019 while having mixed results on TREC DL 2020, TREC CAsT and WebAP. For DL

HARD, the proposed approach does not have any signi�cant improvements. The results suggest that TREC DL 2019

queries are easier – the results from the initial ranking contain less noise – hence, the PRF can add more relevant

information to the queries. On the other hand, the queries of TREC DL 2020, TREC CAsT, and WebAP are more

challenging —the results from the initial ranking contain more noise—hence, adding these PRF signals into the query

will cause query drift and lead to worse performance. DL HARD is created by selecting queries from TREC DL 2019 and

TREC DL 2020 based on the performance systems at TREC had (i.e., select queries for which systems cannot perform
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well) and the characteristics of the queries [39]. Our results show that text-based PRF did not work on DL HARD,

suggesting that the feedback passages do not contain relevant signals or more noise than valuable signals.

Another challenge for text-based PRF is its computational complexity for the full ranking pipeline. It requires at least

two inferences, depending on the text partitioning method. At least, this doubles the total run time compared to that of

deep language rerankers without PRF.

For the vector-based PRF approach, we �nd that our models improve the respective baselines (seven dense retrievers)

across all evaluation metrics and all datasets for the retrieval task; the proposed approach also outperforms the strong

BM25+BERT ranker across several metrics. This result suggests that encoding the PRF feedback passages into embedding

vectors better models the relevance signals exploited by the PRF mechanism. Unlike text-based PRF, the passage vectors

are pre-generated and indexed, so the inference steps on passages are not required at retrieval or rerank time. This

makes vector-based PRF very e�cient: it takes only 1/20th of the time of the BM25+BERT reranker and only about

double the time of the simple bag-of-words BM25. In addition, since our proposed approach works directly with the

vector embeddings of queries and passages, they can be applied on top of any choice of dense retriever. For the reranking

task, we �nd that our models outperform the BM25 and BM25+RM3 baselines across all metrics and datasets, while

they have only mixed improvements over the strong BM25+BERT reranker. Overall, the vector-based PRF approach for

retrieval tends to improve deep metrics, while for reranking, they tend to improve shallow metrics.

To summarize in this article we make the following contributions:

• We thoroughly investigate the PRF e�ectiveness under di�erent conditions, in particular how sensitive the

e�ectiveness is to PRF depth, text handling/vector fusion, and score estimation;

• We conduct a thorough comparison of text-based and vector-based approaches within the same reranking task;

• We conduct a thorough comparison of di�erent vector-based approaches within the same retrieval task;

• We study the e�ciency of the proposed text-based and vector-based PRF approaches.

2 RELATEDWORK

Pseudo-Relevance Feedback (PRF) is a classic query expansion method that modi�es the original query in an attempt to

address the mismatch between the query intent and the query representation [5, 58]. A typical PRF setting uses the

top-ranked passages from a retrieval system as the relevant signal to select query terms to add to the original query or

to set the weights for the query terms. PRF approaches including Rocchio [54], KL expansion [36, 73], query-regularized

mixture model [56], RM3 [34], relevance-feedback matrix factorization [72], and relevance models [24] have been well

studied. The use of PRF on top of e�cient bag-of-words retrieval models is common in information retrieval systems,

and it is an e�ective strategy for improving retrieval e�ectiveness [5, 24]. Traditional PRF approaches [24, 34, 54, 73]

are simple, but more e�ective, robust and generalisable, in comparison to more complex models [56, 72], which instead

achieve marginal gains, may be harder to implement/reproduce or maybe problematic to instantiate across di�erent

datasets or domains from those in which they have been originally evaluated. This study employs the most popular

PRF method in existing research (RM3) as a baseline. The RM3 considers the original query and the feedback passages

when creating a new query by assigning di�erent weights to the original query and feedback terms. RM3 is e�ective

and robust compared to other query expansion methods [34], and it is used as a baseline in several pseudo relevance

feedback studies [4, 35, 42].

Recent research has studied PRF in di�erent settings. Lin [28] considered document ranking as a binary classi�cation

problem, combining PRF with text classi�cation by introducing positive and negative pseudo labels. The positive pseudo
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labels are obtained from the top-𝑘 documents, while the negative labels are from the bottom-𝑛 documents. The �nal

score is a linear interpolation of the classi�er and retriever scores. Li et al. [25] proposed a neural PRF framework,

which was further extended by Wang et al. [59], that utilises a feed-forward neural network to determine the target

document’s relevance score by aggregating the target query and the target feedback relevance scores. However, these

proposed models have achieved marginal improvements over the BM25 baseline. Furthermore, the e�ciency (run time)

of the proposed models have not been reported, and thus it is di�cult to establish whether these marginal improvements

in e�ectiveness may be at the cost of e�ciency.

Deep language models based on transformers [57], such as BERT [12], T5 [50], and RoBERTa [33], has surpassed the

existing state-of-the-art e�ectiveness in di�erent search tasks. BERT, in speci�c, has shown to improve over previous

state-of-the-art for ad hoc retrieval [46]. Recent research has also considered integrating PRF with deep language models.

Padaki et al. [47] integrated RM3 with BERT. The results, however, showed that the selection of highly weighted terms

from the feedback passages via RM3 to expand the original query could signi�cantly hurt the ranking quality of a �ne-

tuned BERT reranker. Yu et al. [68] presented a framework that integrates PRF into a Graph-based Transformer (PGT).

It represents each feedback passage as a node, and the PRF signals are captured using sparse attention between graph

nodes. While this approach handles the input-size limit of deep language models, it achieves marginal improvements

compared to the BERT reranker approach across most evaluation metrics at the cost of e�ciency. Speci�cally, compared

to our results, PGT achieves a lower nDCG@10 than our simplest text-based PRF reranking approach; it also achieves

lower e�ectiveness in reranking and similar e�ectiveness in retrieval than our vector-based PRF with ANCE, but at a

much higher computational cost.

Wang et al. [58] argued that existing PRF research mainly considers relevance matching where terms are used to sort

feedback documents. On the contrary, they propose a model that considers both relevance and semantic matching. The

relevance score is obtained using BM25. For semantic matching, they split the top-𝑘 PRF documents into sentences. For

each sentence, they use BERT to estimate the semantic similarity with the query. Scores from the top-𝑚 sentences of

each document are considered as the semantic score for this document. The �nal scores of each document are calculated

from a linear interpolation of the relevance and semantic scores. The expansion terms are then extracted from the

reranked top-𝑘 PRF documents and added to the original query for a second retrieval stage. Although the improvements

are marginal, they demonstrate that BERT can identify relevance signals from the feedback documents at the sentence

level to enhance retrieval e�ectiveness. However, this marginal improvement is at the expense of e�ciency because

expansion terms are identi�ed through BERT.

Zheng et al. [75, 76] presented a three-phase BERT-based query expansion model: BERT-QE. The �rst phase is a

standard BERT reranking [46] step. In the second phase, the top-𝑘 passages are selected as feedback passages, further

split into overlapping partitions using a sliding window. Together with the original query, these partitions are fed

into BERT to get the top-𝑚 partitions with the highest scores per passage. The top-𝑚 partitions and the candidate

passage are fed into BERT in the third phase. The score of a candidate passage in this phase is calculated as a weighted

sum, where the weight is the relevance score of each partition in the top-𝑚 partitions from phase two, and the score is

the relevance score between the top-𝑚 partitions and the candidate passage. The �nal score of a candidate passage is

calculated by linear interpolation of the �rst phase BERT relevance score between the query and the passage, and the

third phase weighted sum score between the top-𝑚 partitions and the candidate passages. Although BERT-QE achieves

signi�cant improvements in e�ectiveness over BERT reranker, it requires 11.01x more computations than BERT, making

it computationally infeasible in many practical applications.
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Recently, Yu et al. [69] proposed a PRF framework based on ANCE [60], which trains a new query encoder from

ANCE that takes in the top-𝑘 passages from the �rst-round ANCE retrieval, then concatenate the passage texts with

the original query text to form the new PRF query, without changing ANCE’s passage encoder. This newly formed PRF

query is passed to the trained query encoder to produce the PRF query representation, and to retrieve the results from

the original passage collection index. Although the improvements are signi�cant across several datasets over di�erent

metrics, according to a recent reproducibility paper from Li et al. [27], the proposed model does not generalise well to

other dense retriever models and the training process needs to be adjusted accordingly with di�erent dense retriever

models, which makes it di�cult to achieve the same e�ectiveness as the one proposed in the original paper.

Integrating PRF signals with deep language models implies a trade-o� between e�ectiveness and e�ciency. While

current approaches ignored e�ciency, the majority still achieved marginal improvements in e�ectiveness. In this

study, we propose three approaches to integrate PRF signals to improve e�ectiveness while maintaining e�ciency:

(i) by concatenating the feedback passages text with the original query to form the new queries that contain the

relevant signals, (ii) by pre-generating passage collection embeddings and performing PRF in the vector space, because

embeddings promise to capture the semantic similarity between terms [10, 13, 23, 43, 44, 55, 70, 71], which makes

it feasible as a method for �rst stage retrieval as well, (iii) by combining the previous two approaches into a hybrid

approach.

3 METHODOLOGY

3.1 Text-Based Pseudo-Relevance Feedback

BERT is computationally expensive to be applied as a �rst-stage retriever. Hence, it is commonly employed as a reranker

that considers only a subset of the initial retrieval results (usually top 1000). In this approach, we integrate the text-based

PRF signal with the BERT reranker. Padaki et al. [47] demonstrated that the use of RM3 [34] to select highly weighted

terms from the feedback passages and construct the new PRF queries signi�cantly hurts the ranking quality of a

�ne-tuned BERT reranker. Therefore, we use the full passages text to construct the new PRF queries. We address the

challenge of the input size limit of BERT by employing three text-based PRF methods:

(1) Concatenate and Truncate: append the query and the top-𝑘 feedback passages, then truncate to the length of 256

tokens. BERT has an input size limit of 512 tokens; we allocate 256 tokens to the new query and the remaining

tokens are left to concatenate the candidate passage.

(2) Concatenate and Aggregate: append the query to each of the top-𝑘 feedback passages to form 𝑘 new queries. For

each new query, use BERT to perform another rerank, resulting in 𝑘 new ranked lists. The �nal scores for the

candidate passages are generated using di�erent score estimation methods that combine the 𝑘 ranked lists (but

not the ranked list of the original query).

(3) Sliding Window: concatenate the top-𝑘 passages, then use a sliding window to split the aggregated text into

overlapping partitions . Concatenate the query with each partition to create 𝑗 new queries, then follow the same

steps as Concatenate and Aggregate.

Methods 2 and 3 require the aggregation of multiple ranker lists to estimate the scores and obtain the �nal ranked

list. For this, we aggregate the scores of a candidate passage using several methods:

(1) Average: calculate the average of all the scores per candidate passage.

(2) Max: consider only the highest score per candidate passage.

(3) Borda: employ the Borda voting rule [2, 38] to calculate the score of each candidate passage.
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Fig. 1. The proposed architecture for integrating Text-based Pseudo-Relevance Feedback with BERT reranker. The initial retriever is a
traditional bag-of-words BM25.

Figure 1 depicts the proposed architecture for integrating text-based PRF signals with BERT reranker. The initial

retriever is a traditional bag-of-words BM25 followed by BERT reranker. As shown in step 1 , the query is passed to

BM25 to retrieve the initial ranked results from the inverted index. Then the query text and initial retrieval results

are passed to BERT for reranking ( 2 ). The top-𝑘 feedback passages from the reranked list are used as PRF relevance

signals ( 4 ), after mapping them back to their text representation ( 3 ). Then, the query and feedback passage texts are

combined together to form new query texts ( 5 ) followed by another BERT-based scoring step ( 6 ), and �nally the

individual scores are aggregated per candidate passage to form the �nal ranking ( 7 ). The core components of this

architecture, which are PRF with Text Handling and Score Estimation, are described in the next two sections.

3.1.1 Text-Based PRF with Text Handling. We consider three di�erent approaches to handle the text length that exceeds

the BERT input size limit:

Concatenate and Truncate (CT). A new query text is generated by concatenating the original query text with the

top-𝑘 feedback passage texts, separated by a space ( ). If the length of the new query exceeds 256, it will be truncated

to the �rst 256 tokens. Then, we run the new query through BERT reranker. The new query is constructed as follows:

𝑄𝑛𝑒𝑤,𝑙<=256 = d𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + + 𝑝1 + ... + + 𝑝𝑘 e256 (1)

where 𝑄𝑛𝑒𝑤 and 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 represent the new query text and the original query text, respectively. 𝑙 <= 256 represents

the input size limit enforced, which is achieved by truncating the sequence (denoted with d.e256). 𝑝1, ..., 𝑝𝑘 represent

the top-𝑘 feedback passages from the BERT reranker. is the space in between.

Concatenate and Aggregate (CA). This approach generates 𝑘 new queries by concatenating the original query text

with each of the top-𝑘 feedback passage texts, separated by a space ( ). Then, each of the new queries is run through

another BERT reranking step resulting into 𝑘 scores per candidate passage, which will be aggregated later to estimate

the �nal score. The new queries are generated as follows:

𝑄1,𝑛𝑒𝑤 = 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + + 𝑝1

...

𝑄𝑘,𝑛𝑒𝑤 = 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + + 𝑝𝑘

(2)
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where 𝑄1,𝑛𝑒𝑤 , ..., 𝑄𝑘,𝑛𝑒𝑤 represent the 𝑘 new queries. 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 represents the original query text. 𝑝1, .., 𝑝𝑘 represent

the top-𝑘 feedback passage texts. is the separation token in between.

Sliding Window (SW). In this approach, the top-𝑘 feedback passage texts are appended together, then a sliding

window is applied to split the text into 𝑗 overlapping partitions with di�erent window size and stride according to

di�erent datasets’ passage lengths [8], as below:

𝑝1 + ... + 𝑝𝑘
𝑆𝑊−−−→ 𝑝1, ..., 𝑝 𝑗 (3)

where 𝑝1, ..., 𝑝𝑘 represent the top-𝑘 feedback passage texts, 𝑆𝑊 represents the sliding window mechanism, 𝑝1, ..., 𝑝 𝑗

represent the 𝑗 partitions. Similar to the CA approach, the set of 𝑗 new queries is generated using Eq. 2.

Note that after generating each new query, the query/passage pair may exceed the BERT input size limit for the CT

approach. Under this situation, if the length of the new query exceeds 256, we truncate the new query down to be of

length 256. For CA and SW approaches, we also applied the same methodology to guarantee all the new queries are

below the length of 256.

3.1.2 Text-Based with Score Estimation. CA and SW text-handling approaches generate 𝑘 and 𝑗 scores per candidate

passage, respectively. To estimate a �nal score for each candidate passage, we consider the following estimation methods.

Average. The �nal score is estimated by calculating the mean of all scores:

𝑆𝑓 𝑖𝑛𝑎𝑙 = 𝐴𝑣𝑔(𝑆1 + 𝑆2 + ... + 𝑆𝑘 ) (4)

where 𝑆𝑓 𝑖𝑛𝑎𝑙 represents the �nal ranking score for each candidate passage, and 𝑆1, ..., 𝑆𝑘 represent the 𝑘 ranking scores

for each candidate passage based on each of the 𝑘 new queries. For the rest of this paper, we refer to this method as

Text-Average, represented by T-A for brevity.

Max. The �nal score is estimated by taking the highest score per candidate passage:

𝑆𝑓 𝑖𝑛𝑎𝑙 = 𝑀𝑎𝑥 (𝑆1, 𝑆2, ..., 𝑆𝑘 ) (5)

where 𝑆𝑓 𝑖𝑛𝑎𝑙 represents the maximum score for each candidate passage, and 𝑆1, ..., 𝑆𝑘 represent the 𝑘 ranking scores for

each candidate passage based on each of the 𝑘 new queries. For the rest of this paper, we refer to this method as Max,

represented by M for brevity.

Borda. The �nal score is estimated by using the Borda voting algorithm. The score of a candidate passage w.r.t a

ranked list is the number of candidate passages in the ranked list that are ranked lower. Scores are summed over ranked

lists as follows:

𝑆𝑓 𝑖𝑛𝑎𝑙 =
∑

𝐿𝑖 :𝑝∈𝐿𝑖

𝑛 − 𝑟𝐿𝑖 (𝑝) + 1

𝑛
(6)

where 𝐿𝑖 represents the 𝑖-𝑡ℎ ranked list produced using the 𝑖-𝑡ℎ new query, 𝑝 represents the candidate passage, 𝑟 is the

rank of the candidate passage, and 𝑛 represents the number of candidate passages in the ranked list. For the rest of this

paper, we refer to this method as Borda, represented by B for brevity.
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Fig. 2. The proposed architecture for integrating Vector-based Pseudo-Relevance Feedback with Deep Language Model dense
retrievers for the retrieval task.

3.2 Vector-Based Pseudo-Relevance Feedback

Using existing, e�cient �rst stage dense retrievers(RepBERT [74], ANCE [60], TCT-ColBERT V1 [30], TCT-ColBERT V2

HN+ [31], DistilBERT KD [17], DistilBERT Balanced [18], and SBERT [51]), we employ two vector-based PRF methods

for the retrieval task:

(1) Average: the mean of the original query embeddings and the feedback passage embeddings are used to generate

the new query representation.

(2) Rocchio: di�erent weights are assigned to the original query embeddings and the feedback passage embeddings

following the intuition provided by the original Relevance Feedback mechanism proposed by Rocchio [54].

Figure 2 depicts the proposed architecture for integrating vector-based PRF signals with deep language model dense

retrievers. A single deep language model is used to generate o�ine the embeddings for all passages, which are then

stored in a Faiss index [20]. The deep language model is also used to generate the query embedding at inference time

(step 1 ). The query embedding is then passed to the dense retriever that exploits the Faiss index to perform the �rst

pass of retrieval to obtain the initial ranked list ( 2 ). The top-𝑘 feedback passage embeddings from the initial ranked list

are used as PRF relevance signals ( 3 ), using vector operations, and are then used to perform the subsequent retrieval

to get the �nal ranked list ( 4 ).

We describe the two proposed vector-based PRF approaches in the next two sections.

3.2.1 Vector-Based PRF with Average. A new query embedding is generated by averaging the original query embedding

and the top-𝑘 feedback passage embeddings. The intuition is to treat the original query at par of the signal from the

top-𝑘 feedback passages (i.e., the query weights as much as each passage). The new query embedding is computed as

follows:

𝐸𝑄𝑛𝑒𝑤
= 𝐴𝑣𝑔(𝐸 (𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ), 𝐸 (𝑝1), ..., 𝐸 (𝑝𝑘 )) (7)

where 𝐸 represents the embeddings of either the query or the feedback passage, 𝐸𝑄𝑛𝑒𝑤
represents the newly

formulated query embeddings. We do not generate an actual text query in the vector-based PRF approaches: only the

embedding of the new query is generated.𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 represents the original query, 𝑝1, ..., 𝑝𝑘 represent the top-𝑘 passages

retrieved by the �rst stage ranker. In the remainder of the paper we refer to this method as Vector Average, represented

by V-A for brevity.

3.2.2 Vector-Based PRFwith Rocchio. Thismethod is inspired by the original Rocchiomethod for relevance feedback [54]

but adapted to deep language models. The intuition is to transform the original query embedding towards the average
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Table 1. Statistics of the four datasets considered in our experiments. Where #Q represents the number of queries, #P represents the
number of passages in the collection, Avg Len represents the average length of passages, Avg #J/Q represents the average number of
judged passages per query, and #J represents the number of judged passages in total.

#Q #P Avg Len Avg #J/Q #J

TREC DL 2019 43 8,841,823 64.7 215.3 9,260

TREC DL 2020 54 8,841,823 64.7 210.9 11,386

TREC CAsT 2019 502 38,618,941 68.6 63.2 31,713

WebAP 80 1,959,777 74.5 11858.8 948,700

DL HARD 50 8,841,823 64.7 85.1 4,256

of the top-𝑘 feedback passage embeddings by assigning di�erent weights to query and (the combination of) feedback

passages, thus controlling the contribution of each component toward the �nal score. Unlike in the original version of

Rocchio, in this work we do not model the PRF with non-relevant passages: hence the negative portion of Rocchio is

omitted. We note that this could be extended by identifying which passages in the initial ranked list could represent a

negative relevance signal (e.g., the bottom passages) – however we leave this for future consideration.

Thus, our Rocchio PRF approach consists of interpolating the query embedding and the average PRF embedding:

𝐸𝑄𝑛𝑒𝑤
= 𝛼 ∗ 𝐸 (𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ) + 𝛽 ∗𝐴𝑣𝑔(𝐸 (𝑝1), ..., 𝐸 (𝑝𝑘 )) (8)

where 𝛼 controls the weight assigned to the original query embedding and 𝛽 the weight assigned to the PRF signal. In

the remainder of the paper we refer to this method as Rocchio, represented by RC𝛼 and RC𝛼,𝛽 for brevity.

3.3 Hybrid Pseudo-Relevance Feedback

Text-based PRF is a computationally expensive approach for the reranking task, in our experiments, the BERT inference

step is executed twice: one before the PRF, one after the PRF. On the other hand, vector-based PRF is an e�cient

approach for the retrieval task because of the high e�ciency of the dense retriever models. In this section, we investigate

a hybrid approach where the architecture of vector-based PRF in Figure 2 is adapted to the reranking task. The main

di�erence is that the initial ranking of passages is obtained from an inverted-index (Text-based) multi-stage pipeline

such as BM25+BERT (as in Figure 1). In particular, the initial retrieval results obtained through steps 1 and 2 in

Figure 2 are replaced by steps 1 , 2 , 3 , and 4 in Figure 1. The ranked list of passages produced by the BERT reranker

is mapped to embeddings using the Faiss index before applying the vector-based PRF methods.

4 EXPERIMENTAL SETUP

4.1 Datasets

Our experiments use the TREC Deep Learning Track Passage Retrieval Task 2019 [6] (DL 2019) and 2020 [7] (DL 2020),

DL HARD [39], the TREC Conversational Assistance Track 2019 [11] (CAsT 2019), and the Web Answer Passages

(WebAP) [21]. The detailed statistics for each dataset are listed in Table 1.

TREC DL 2019 and 2020 contain 200 queries each. However for 2019, only 43 queries have judgements; and thus the

remaining 157 queries without judgements are discarded from our evaluation. In 2020, only 54 queries have judgements;

and thus the remaining 146 queries are similarly discarded. The relevance judgements for both datasets range from 0

(not relevant) to 3 (highly relevant). The passage collection is the same as the MS MARCO passage ranking dataset [45],

which is a benchmark English dataset for ad-hoc retrieval tasks with ≈8.8M passages. The di�erence between TREC DL

Manuscript submitted to ACM TOIS



10 Li and Mourad, et al.

and MS MARCO is that queries in TREC DL have several judgements per query (215.3/210.9 on average for 2019/2020),

instead of an average of one judgement per query for MS MARCO. The very sparse relevance judgements of MS MARCO

would not be able to provide detailed, reliable information on the behaviour of the PRF approaches and thus we do not

report them in this article. However, we still tried to apply our vector-based PRF for the retrieval task on MS MARCO

dev set, which consists of 6,980 queries. We refer the reader to our github page for the full results.
1

DL HARD builds upon the TREC DL 2019/2020 queries: these queries are considered as hard queries on which

previous methods do not perform well, and new judgements are provided for the added new queries (originally unjudged

in TREC) [39]. While TREC CAsT 2019 is originally constructed for multi-turn conversational search, we treat each turn

independently, and we use the manually rewritten topic utterances. WebAP is built from the TREC 2004 Terabyte Track

collection, and it contains 80 queries
2
and about 2 Million passages (1,1858.8 judged passages per query, on average).

The relevance judgements for TREC CAsT 2019 and WebAP ranged from 0 (not relevant) to 4 (highly relevant).

4.2 Evaluation Metrics

We employ MAP, nDCG@{1, 3, 10}, and Reciprocal Rank (RR)
3
for the reranking task on both text-based PRF and

vector-based PRF. We select these metrics because they are the common measures reported for BERT based models and

these datasets – thus allowing cross-comparison with previous and future work. For the retrieval task on vector-based

PRF, we also report Recall@{1000}, but it is not considered for text-based PRF approaches because they are built on top

of the BERT reranker where the Recall is limited by the initial retriever (BM25) to the top 1,000 passages. We report

Recall for its diagnostic ability in informing whether a gain in e.g., MAP is produced because of a higher number of

retrieved relevant passages, or because of a better ranking (i.e. ordering of the same number of relevant passages). For

the TREC DL 2020 dataset, we follow the instructions from the organisers and consider the label binarized at relevance

level 2 for all evaluation metrics. For all results, statistical signi�cance is performed using two-tailed paired t-test.

4.3 Baselines

We consider the following baselines:

• BM25: traditional �rst stage retriever, implemented using the Anserini toolkit [62] with its default settings.

• BM25+RM3: RM3 pseudo relevance feedback method [1] on top of BM25, as implemented in Anserini. We use

this approach as a representative bag-of-words PRF method, since previous research has found alternative

bag-of-words PRF approaches achieve similar e�ectiveness [42]. We note that BM25+RM3 is a standard baseline

for MS MARCO and TREC DL.

• RepBERT (R): �rst stage dense retriever [74]. We use the implementation made available by the authors.

• ANCE (A): �rst stage dense retriever [60]. We use the scripts provided by the authors for both data pre-processing

and model implementation.

• TCT-ColBERT V1, TCT-ColBERT V2 HN+, DistilBERT KD, DistilBERT Balanced, and SBERT: �rst stage

dense retrievers employed to evaluate the generalisability of our hypotheses. We use the implementations

provided in the pyserini toolkit [29].

• RepBERT+BERT (R+B): �rst stage dense retriever with an additional BERT reranker to rerank the initial results

provided by RepBERT.

1
https://github.com/castorini/pyserini/blob/master/docs/experiments-vector-prf.md

2
In addition to two queries without relevance judgements, which are excluded in our experiments

3
If for a query no relevant passage is retrieved up to the considered standard cut-o� (1,000), then we assign RR=0.

Manuscript submitted to ACM TOIS

https://github.com/castorini/pyserini/blob/master/docs/experiments-vector-prf.md


Pseudo Relevance Feedback with Deep Language Models and Dense Retrievers: Successes and Pitfalls 11

Table 2. Window size and stride size of the Sliding Window PRF approach for each dataset.

window size stride

TREC DL 2019 65 32

TREC DL 2020 65 32

TREC CAsT 2019 69 34

WebAP 75 37

DL HARD 65 32

• ANCE+BERT (A+B): �rst stage dense retriever with an additional BERT reranker to rerank the initial results

provided by ANCE.

• BM25+BERT (BB): A common two-stage reranker pipeline, �rst proposed by Nogueira and Cho [46], where the

initial stage is BM25, and BERT is used to rerank the results from BM25. BERT is �ne-tuned on MS MARCO

Passage Retrieval Dataset [45]. In all of our experiments, we use the 12 layer uncased BERT-Base provided by

Nogueira and Cho [46], unless stated otherwise, and we simply refer to it as BERT. In Section 5.5 we also use

BERT-Large for the e�ciency analysis.

4.4 Applying PRF to Rerankers

Text-Based Pseudo-Relevance Feedback for Reranking. We refer to this approach as BB+PRF, where BB represents

BM25+BERT. For the Sliding Window approach, we use the average passage length as the window size, and half of

the window size as the stride. Details of the Sliding Window parameters for each dataset are shown in Table 2. We

experiment by using the top 𝑘 = 1, 3, 5, 10, 15, 20 passages as pseudo relevance feedback.

Vector-Based Pseudo-Relevance Feedback for Reranking.We consider the vector representations (embeddings) generated

by RepBERT and ANCE to apply PRF as a second stage ranker, represented as BB+PRF-R and BB+PRF-A, where BB

represents BM25+BERT, R represents RepBERT, and A represents ANCE. To achieve this, the top-𝑘 passages IDs from

BERT are mapped to their vector representations before estimating the �nal scores. For the Rocchio method, we

experiment by assigning weights to the query and the feedback passage within the range of 0.1–1 with a step of 0.1. We

experiment by using the top 𝑘 = 1, 3, 5, 10 passages as pseudo relevance feedback.

4.5 Applying PRF to Retrievers

We choose RepBERT [74], ANCE [60], TCT-ColBERT V1 [30], TCT-ColBERT V2 HN+ [31], DistilBERT KD [17],

DistilBERT Balanced [18], and SBERT [51] as representative �rst stage dense retrievers because they achieve state-of-

the-art e�ectiveness in previous work on MS MARCO. We note that a host of alternative �rst stage dense retrievers

have been recently proposed, including stronger ones like RocketQA [48] and RocketQAv2 [52], but most of these

retrievers consider more complex training procedures than those selected in this study. We further note that the

implementation of the current best �rst stage dense retriever, RocketQAv2, has only just been made available and is

based on PaddlePaddle [37], thus uses a setup that di�ers from ours and is not selected for simplicity. We expect that

�ndings that apply for the dense retrievers we chose are likely to translate to other dense retrievers, like RocketQA and

RocketQAv2.

For the dense retrievers, we utilise the Faiss toolkit [20] to build the index and perform retrieval. We develop our PRF

approaches on top of these dense retrievers. To be consistent with the original dense retriever models, we truncate the
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query tokens and passage tokens according to the original settings in their papers. For simplicity, we mainly investigate

our proposed vector-based PRF models on top of ANCE and RepBERT; the rest of the models are only shown in Table 4

for validation purposes as well as a demonstration of the generalisability of our proposed models. Therefore, in the

following sections, vector-based PRF with RepBERT as base model is represented by R+PRF-R, and with ANCE as base

model is represented by A+PRF-A for the retrieval task.

4.6 E�iciency experiments

To measure the runtime of each method, we run our experiments on a Unix-based server with the Intel(R) Xeon(R)

Gold 6132 CPU @ 2.60GHz for BM25 and BM25 + RM3. For dense retrievers and our approaches, we use a Unix-based

server equipped with a single Tesla V100 SMX2 32GB GPU.

5 RESULTS

The overarching research question we seek to answer with our experiments is:What are the successes and pitfalls of

integrating PRF into deep language model rerankers and dense retrievers in terms of e�ectiveness and e�ciency? Each of

the following subsections addresses a more speci�c sub-question.

5.1 PRF Depth

RQ1:What is the impact of PRF depth on the e�ectiveness of reranking and retrieval? To answer this question,
we vary the number of top-𝑘 passages while displaying the distribution of results over other parameters (text handling

and score estimation).

5.1.1 Reranking with Di�erent PRF Depths. Results of text-based PRF (BB+PRF) for reranking are shown in Figure 3.

For TREC DL 2019, increased PRF depth is associated with a marginal improvement in e�ectiveness across most of the

evaluation metrics, except for nDCG@10 and, to a minor extent, nDCG@3. On the other hand, increasing PRF depth

decreases the e�ectiveness across the remaining datasets, and none of the PRF con�gurations is substantially better

than the BB baseline.

Results of hybrid PRF models (BB+PRF-R and BB+PRF-A) are shown in Figure 4. For TREC DL 2019, increased PRF

depth is associated with substantial improvements in RR and nDCG@1 using both BB+PRF-R and BB+PRF-A, and

marginal improvements in nDCG at depths 3–10. For TREC DL 2020 and TREC CAsT, increased PRF depth is associated

with marginal improvements in nDCG@{1,3}. For the remaining datasets, increased PRF depth shows mixed results,

but overall it appears to decrease the e�ectiveness over all metrics. In addition, we report the results of hybrid PRF

dense retrievers with a BERT reranker (R+PRF+B and A+PRF+B) in Figure 5. We observer that vector-based PRF models

with BERT reranker either hurts RR or marginally improves it across all datasets with all PRF depths. On the other

hand, all PRF approaches improve MAP across all datasets with PRF depths 3–5, with ANCE-based slightly better than

RepBERT-based on TREC DL 2019, TREC DL 2020, RepBERT-based is slightly better than ANCE-based on TREC CAsT.

Other datasets show similar e�ectiveness between these two over di�erent PRF depths. For all other metrics, most of

the highest e�ectivenesses are achieved with PRF depths 3–5, although the improvements are mostly marginal.

5.1.2 Retrieval with Di�erent PRF Depths. Results of vector-based PRF (R+PRF-R and A+PRF-A) for retrieval are shown

in Figure 6. For deep evaluation metrics (MAP, nDCG@10 and R@1000), increased PRF depth is associated with

signi�cant improvements in e�ectiveness over the baseline dense retrievers across all datasets, with few exceptions for

DL HARD. Increased PRF depth is associated with decreased RR values across all datasets, with few exceptions for
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Fig. 3. Impact of PRF depth on the e�ectiveness (y-axis) of BM25+BERT+PRF(BB+PRF) for the task of reranking, 𝑘 represents di�erent
PRF depths. Baseline BM25+BERT(BB) is marked with a dashed red line. PRF depth impacts the e�ectiveness of text-based reranking
models negatively.
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Fig. 4. Impact of PRF depth on the e�ectiveness (y-axis) of BM25+BERT+PRF-RepBERT(BB+PRF-R) and BM25+BERT+PRF-
ANCE(BB+PRF-A) for the task of reranking, 𝑘 represents the di�erent PRF depths. Baseline BM25+BERT(BB) is marked with
a dashed red line. Increasing PRF depth tends to enhance the e�ectiveness of hybrid models over shallow metrics (RR, nDCG@{1,3})
for reranking.
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Fig. 5. Impact of PRF depth on the e�ectiveness (y-axis) of ANCE+PRF+BERT(A+PRF+B) and RepBERT+PRF+BERT(R+PRF+B) for the
task of reranking, 𝑘 represents the di�erent PRF depths. Baseline ANCE+BERT(A+B) and RepBERT+BERT(R+B) are marked with a
dash-dot blue line and a dashed red line respectively. Vector-based PRF with BERT reranker does not seem to improve the metrics
significantly except MAP, across datasets and PRF depths.
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Fig. 6. Impact of PRF depth on the e�ectiveness (y-axis) of RepBERT+PRF-RepBERT(R+PRF-R) and ANCE+PRF-ANCE(A+PRF-A) for
the task of retrieval, 𝑘 represents di�erent PRF depths. Baseline RepBERT(R) is marked with a dashed red line, ANCE(A) is marked
with a dash-dot blue line. Increasing PRF depth tends to enhance the e�ectiveness over deep metrics (R@1000, nDCG@10 and MAP)
for retrieval.

A+PRF-A where PRF at depth of 10 is on par or marginally better. For shallow metrics such as nDCG@{1, 3}, mixed

impact across datasets is witnessed with respect to changing PRF depths. For TREC DL 2019 and 2020, PRF of depth 1 is

on par with the baselines. For TREC CAsT and WebAP, increased PRF depth is associated with signi�cant increases of
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e�ectiveness of A+PRF-A, while PRF of depth 1 enhances the e�ectiveness of R+PRF-R. For DL Hard, all PRF depths

perform on par with the ANCE(A) baseline, while PRF of depth 1 performs on par with the RepBERT(R) baseline.

5.1.3 Summary. To summarize, increasing PRF depth tends to enhance the e�ectiveness of hybrid models over shallow

metrics (RR, nDCG@{1,3}) for reranking, and deep metrics (R@1000, nDCG@10 and MAP) for retrieval. On the other

hand, PRF depth negatively impacts the e�ectiveness of text-based reranking models. Vector-based PRF with BERT

reranker does not seem to improve the metrics signi�cantly except MAP, across datasets and PRF depths.

5.2 Text Handling

RQ2: What is the impact of text handling techniques on the e�ectiveness of reranking and retrieval? To
answer this question, we vary the text handling techniques while displaying the distribution of results over other

parameters (PRF depth and score estimation). We analyze the e�ectiveness under three text handling techniques: Concat-

enate and Truncate (CT), Concatenate and Aggregation (CA), and Sliding Window (SW); and two dense representations

for text: RepBERT(R+PRF-R) and ANCE(A+PRF-A).

5.2.1 Reranking with Di�erent Text Handling. Results are shown in Figure 7. For TREC DL 2019, CA substantially

improves MAP, RR, and nDCG@1, and marginally improves nDCG@3. BB+PRF-A and BB+PRF-R substantially improve

RR, while BB+PRF-A also substantially improves nDCG@1. On the other hand, BB+PRF-R is on par with the baseline

over 𝑛𝐷𝐶𝐺@1, and BB+PRF-A is on par with nDCG@{3, 10}. All other methods do not improve e�ectiveness. For TREC

DL 2020, SW marginally improves nDCG@{1, 3}. BB+PRF-R is on par with the baseline for nDCG@1. All other methods

do not improve over the baseline, and all methods, including SW and BB+PRF-R, hurt MAP.

For TREC CAsT 2019, unlike the previous datasets, no improvements can be observed for MAP and nDCG@10

across all methods. CT is on par with the baseline in terms of RR, and marginal improvements are present for nDCG@1.

BB+PRF-A is on par with the baseline for nDCG@1. All other metrics are not improved when employing di�erent text

handling methods.

For WebAP, no substantial improvements are found, regardless of the metric, with the exception of nDCG@3, for

which BB+PRF-A is on par with the baseline.

For DL HARD, all methods hurt MAP and RR. BB+PRF-A is on par with the baseline for nDCG@1. No substantial

improvements on other metrics can be observed for the remaining methods.

The results for vector-based PRF models with BERT reranker are shown in Figure 8. For TREC DL 2019, TREC DL

2020, ANCE-based is better than RepBERT-based PRF models over MAP, RR, nDCG@10. For other datasets except DL

HARD, RepBERT-based is better than ANCE-based w.r.t all metrics except nDCG@10. However, the improvements only

occur with MAP on all datasets, although marginal on DL HARD. Both ANCE-based and RepBERT-based either hurts

or on par with baseline on all other metrics across all datasets.

5.2.2 Retrieval with Di�erent Text Handling. Results are shown in Figure 9. For TREC DL 2019, both methods sub-

stantially outperform their respective baselines in terms of MAP, R@1000, and nDCG@10. No improvement can be

observed for RR and nDCG@1. A+PRF-A does not outperform the baseline in terms of nDCG@3, but R+PRF-R does.

For TREC DL 2020, both methods A+PRF-A and R+PRF-R substantially improve MAP and R@1000. On the other hand,

they do not improve RR and nDCG@1. R+PRF-R is on par with the baseline for nDCG@{3, 10}. Marginal improvements

can be observed for A+PRF-A in terms of nDCG@10.
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Fig. 7. Impact of text handling on the e�ectiveness (y-axis) of PRF approaches for the task of reranking, where CT, CA and SW
represent the text handling methods Concatenate and Truncate, Concatenate and Aggregate and Sliding Window, respectively, while
BM25+BERT+PRF-RepBERT(BB+PRF-R) and BM25+BERT+PRF-ANCE(BB+PRF-A) are the dense representations for text. Baseline
BM25+BERT(BB) is marked with a dashed red line. CA tends to improve more on MAP, but all other improvements are marginal and
some significant losses can be observed.
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Fig. 8. Impact of dense representations on the e�ectiveness (y-axis) of PRF approaches for the task of reranking, where R+PRF+B and
A+PRF+B represents RepBERT+PRF+BERT and ANCE+PRF+BERT, respectively. Baseline ANCE+BERT(A+B) and RepBERT+BERT(R+B)
are marked with a dash-dot blue line and a dashed red line respectively. When applying the BERT reranker a�er vector-based PRF,
both ANCE-based and RepBERT-based improve MAP on all datasets, but there are no improvements nor losses on the remaining
metrics across all datasets.

For TREC CAsT 2019, both methods substantially improve the baseline in terms of MAP, R@1000, and nDCG@{3,

10}. Both A+PRF-A and R+PRF-R improve over the baseline in terms of nDCG@1, but A+PRF-A does so substantially; in

addition A+PRF-A is on par with the baseline for RR. Both methods do not improve the baselines for other metrics.
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Fig. 9. Vector-based PRF retrieval e�ectiveness (y-axis) by using di�erent dense retrieval models RepBERT(R+PRF-R) and ANCE(A+PRF-
A). Baseline RepBERT(R) is marked with dashed red line, ANCE(A) is marked with dash-dot blue line. A+PRF-A is, overall, a be�er
representation, as it improves all metrics and outperforms all baselines. R+PRF-R performs worse than A+PRF-A. This is because
RepBERT(R) baseline is worse than ANCE(A) baseline across most metrics, causing the top ranked results to contain less relevant
passages compared to A: hence, the PRF mechanism receives a noisier relevance signal from the feedback passages.

ForWebAP, similar trends can be observed for MAP, RR, and R@1000. R+PRF-R hurts the e�ectiveness over nDCG@{1,

3}, while A+PRF-A marginally improves nDCG@1 and substantially improves nDCG@3 and nDCG@10.

For DL HARD, both methods substantially improve MAP; R+PRF-R also substantially improves R@1000. A+PRF-A

is on par with the baseline for RR, R@1000, nDCG@1, and marginally improves nDCG@10. No improvements are

observed for the remaining metrics for either method.
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5.2.3 Summary. When used for reranking, CA tends to improve more on MAP, BB+PRF-R tends to have more

improvements for RR, and BB+PRF-A tends to improve more on nDCG@{1, 3, 10}. In general, all methods tend to

improve more nDCG than RR or MAP. When applying the BERT reranker after vector-based PRF, both ANCE-based

and RepBERT-based improve MAP on all datasets, but there are no improvements nor losses on the remaining metrics

across all datasets.

When used for retrieval, A+PRF-A is, overall, a better representation, as it improves all metrics and outperforms

all baselines. R+PRF-R performs worse than A+PRF-A. This is because RepBERT(R) baseline is worse than ANCE(A)

baseline across most metrics, causing the top ranked results to contain less relevant passages compared to A: hence, the

PRF mechanism receives a noisier relevance signal from the feedback passages.

5.3 Score Estimation

RQ3: What is the impact of score estimation methods on the e�ectiveness of reranking and retrieval? To
answer this question, we vary the score estimation methods while displaying the distribution of results over other

parameters (PRF depth and text handling). We analyze the e�ectiveness under three text-based score aggregation

methods: Average (T-A), Borda (B) and Max (M); and three vector-based score fusion methods: Average (V-A), Rocchio

with �xed 𝛼 and varying 𝛽 (RC𝛽 ), and Rocchio with varying 𝛼 and 𝛽 (RC𝛼,𝛽 ).

5.3.1 Reranking with Text Score Estimation and Vector Fusion. Results are shown in Figure 10. For TREC DL 2019, T-A

outperforms the baseline in terms of MAP, RR, and nDCG@1, while B is only on par with the baseline for RR, and

𝑀 hurts e�ectiveness across all metrics. BB+PRF-A with V-A is on par with the baseline across all metrics, except

for marginal improvements found for RR. BB+PRF-R with V-A only improves RR marginally. Both BB+PRF-A and

BB+PRF-R with RC𝛽 and RC𝛼,𝛽 substantially improve RR, while only BB+PRF-A with RC𝛼,𝛽 substantially improves

RR and nDCG@1, and is on par with the baseline A for nDCG@{3, 10}.

For TREC DL 2020, no score estimation method can outperform the baseline in terms of MAP. B, BB+PRF-R with

RC𝛽 and RC𝛼,𝛽 are on par with the baseline for nDCG@{1, 3}. M is the worst estimation method for this dataset, as it

only outperforms the baseline for nDCG@1, and all remaining methods decrease e�ectiveness.

For TREC CAsT 2019, M does not perform well across any metric, while T-A and B are on par with the baseline for

nDCG@1. On the other hand, BB+PRF-A with V-A, RC𝛽 , and RC𝛼,𝛽 is on par with the baseline for nDCG@1.

For WebAP, all methods are worse than the baseline in terms of MAP. For RR, only BB+PRF-A with RC𝛽 is on par

with the baseline for nDCG@3.

For DL HARD, all methods are worse than the baseline for MAP, RR, and nDCG@{3, 10}, except BB+PRF-A with

RC𝛽 and RC𝛼,𝛽 , which is on par with the baseline for nDCG@1.

The results detailed where applying BERT reranker after the vector-based PRF approaches are shown in Figure 11.

Signi�cant improvements for MAP over TREC DL 2019, TREC DL 2020, TREC CAsT, and WebAP can be observed with

RC𝛽 , and RC𝛼,𝛽 . Average approach performs exceptionally well on TREC DL 2019 and TREC DL 2020 datasets. For all

other metrics on all datasets, the majority of the improvements are marginal, and some statistically signi�cant losses

are observed. On the other hand, ANCE-based PRF with Average approach improves nDCG@1 signi�cantly on TREC

CAsT and DL HARD.

5.3.2 Retrieval with Vector Fusion. Results are shown in Figure 12. For TREC DL 2019, overall, A+PRF-A outperforms

the baseline across MAP, R@1000, and nDCG@10, while it is worse than the baseline for RR, and nDCG@{1, 3}. R+PRF-R
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Fig. 10. Reranking e�ectiveness (y-axis) by using di�erent score estimation methods. Where T-A is Text Average, B is Borda, M is
Max, V-A is Vector Average, RC𝛽 is Rocchio with fixed 𝛼 value, and RC𝛼,𝛽 is Rocchio with 𝛼 and 𝛽 . Baseline BM25+BERT(BB) is
marked with dashed red line. RC𝛼,𝛽 is found to perform considerably well across all the metrics and datasets. B, T-A, and RC𝛽 also
perform well across several metrics and all datasets. M performs poorly across all metrics and datasets.
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Fig. 11. Reranking e�ectiveness (y-axis) by using di�erent score estimation methods. Where A is Vector Average, RC𝛽 is Rocchio
with fixed 𝛼 value, and RC𝛼,𝛽 is Rocchio with 𝛼 and 𝛽 . Baseline ANCE+BERT(A+B) and RepBERT+BERT(R+B) are marked with a
dash-dot blue line and a dashed red line respectively. Significant improvements can be observed for MAP, with Average performing
slightly be�er than the other two methods. Average also performs the best across the majority of the datasets and metrics, although
the improvements where present are marginal compared to the baselines.
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Fig. 12. Vector-based PRF retrieval e�ectiveness (y-axis) by using di�erent vector fusion methods. Where A is Vector Average, RC𝛽 is
Rocchio with fixed 𝛼 value, and RC𝛼,𝛽 is Rocchio with 𝛼 and 𝛽 . Baseline RepBERT(R) is marked with dashed red line, ANCE(A) is
marked with dash-dot blue line. RC𝛼,𝛽 and RC𝛽 perform the best in most circumstances. A+PRF-A with these methods is more
likely to improve nDCG at early cut-o�s, while R+PRF-R with these methods is more likely to improve deep recall.

also substantially improves MAP, R@1000, and nDCG@10, and it is on par with the baseline for nDCG@3 when RC𝛼,𝛽

is used.

For TREC DL 2020, R+PRF-R performs exceptionally well in terms of R@1000, but both A+PRF-A and R+PRF-R do not

outperform the respective baselines in terms of RR. On the other hand, A+PRF-A also outperforms the A+PRF-A baseline

for R@1000, although the improvement is smaller than it was for R+PRF-R. All methods with A+PRF-A are on par with
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the baseline in terms of nDCG@10; a similar result is obtained for R+PRF-R, except that marginal improvements can be

observed with RC𝛽 .

For TREC CAsT 2019, both A+PRF-A and R+PRF-R substantially outperform the respective baselines in terms of MAP.

A+PRF-A achieves substantial improvements in terms of nDCG@{1, 3, 10}. Both A+PRF-A and R+PRF-R, combined

with any of V-A, RC𝛼 or RC𝛼,𝛽 , are either on par or worse than other metrics of the baseline and the dense retrievers

without PRF (R and A).

For WebAP, both base models substantially improve MAP and R@1000, except R+PRF-R with A, which is on par

with the baseline in terms of MAP. Overall, A+PRF-A is either on par with or improves the baseline across all metrics.

On the other hand, R+PRF-R instead exhibits losses in terms of nDCG@{1, 3, 10}.

For DL HARD, A+PRF-A substantially improves MAP and nDCG@10 with RC𝛽 . R+PRF-R substantially improves

MAP and R@1000 with RC𝛽 . All other metrics are either on par or worse than the baselines.

5.3.3 Summary. When the reranking task is considered, RC𝛼,𝛽 is found to perform considerably well across all the

metrics and datasets. B, T-A, and RC𝛽 also perform well across several metrics and all datasets. M performs poorly

across all metrics and datasets.

When adding the BERT reranker after the Vector-based PRF, signi�cant improvements can be observed for MAP,

with average performing slightly better than the other two methods. Average also performs the best across the majority

of the datasets and metrics, although the improvements where present are marginal compared to the baselines.

When the retrieval task is considered, RC𝛼,𝛽 and RC𝛽 perform the best in most circumstances. A+PRF-A with these

methods is more likely to improve nDCG at early cut-o�s, while R+PRF-R with these methods is more likely to improve

deep recall.

5.4 E�ectiveness of PRF

RQ4: What is the impact of PRF models on the e�ectiveness of reranking and retrieval? To answer this

question, we consider only our best performing PRF models with the optimal values for all the parameters combined.

Results are presented in Table 3. For each dataset, the middle three rows represent PRF rerankers(BB+PRF, BB+PRF-R

and BB+PRF-A), and the last two rows represent PRF retrievers (R+PRF-R and A+PRF-A). BB, R, and A are abbreviations

for BM25+BERT, RepBERT, and ANCE, respectively. R@1000 is considered only for the evaluation of retrieval, mainly

where it is infeasible to employ BERT for retrieval.

5.4.1 Reranking with Text-Based PRF (BB+PRF). For TREC DL 2019, our model improves e�ectiveness over all metrics,

with statistical signi�cance mainly for shallow metrics (RR, nDCG@{1,3}). For TREC DL 2020, we observe improvements

over shallow metrics only, although statistically not signi�cant.

For TREC CAsT 2019, BB+PRF does not improve the e�ectiveness of BM25+BERT, except for nDCG@1. We speculate

this is because BM25+BERT is trained with short passages, so it performs the best on CAsT (which consists of short

passages).

For WebAP, improvements are observed over MAP and nDCG@{3,10}. Again, we believe this to be associated with

the length of the passages in the dataset: here passages are longer and thus BM25+BERT (trained/�ne-tuned on short

passages) does not perform well.

For DL HARD, the improvement is only on nDCG@1, yet not signi�cant, while nDCG@10 is signi�cantly worse

than the baseline. We speculate this is due to the poor relevance signals received by the PRF mechanism. Note that
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Table 3. Results of PRF approaches for the tasks of reranking and retrieval across di�erent datasets. For each parametric method, the
se�ings that achieve optimal e�ectiveness over all metrics are reported. Statistical significance (paired t-test) with 𝑝 < 0.05 between
PRF models and BM25 is marked with 𝑎 , between PRF models and BM25+RM3 is marked with 𝑏 , between PRF and the corresponding
baseline is marked with 𝑐 , between Vector-Based PRF+BERT and Dense Retriever+BERT is marked with 𝑑 (For these two we do not
compare with other baselines). Best results with respect to each dataset and each metric are highlighted in bold.

Model MAP RR nDCG@1 nDCG@3 nDCG@10 R@1000

T
r
e
c
D
L
2
0
1
9

BM25 .3773 .8245 .5426 .5230 .5058 .7389

BM25+RM3 .4270 .8167 .5465 .5195 .5180 .7882
BM25+BERT (BB) .4827 .9240 .6977 .7203 .7061 .7389

RepBERT+BERT (R+B) .4258 .9388 .7209 .7317 .6960 .6689

ANCE+BERT (A+B) .4315 .9388 .7209 .7371 .6965 .6610

RepBERT (R) .3311 .9243 .6589 .6256 .6100 .6689

ANCE (A) .3611 .9201 .7209 .6765 .6452 .6610

BB+PRF(𝑘 = 10,CA,BORDA) .4947
𝑎𝑏 .9826𝑎𝑏𝑐 .7946𝑎𝑏𝑐 .7528𝑎𝑏𝑐 .7178

𝑎𝑏
–

BB+PRF-R(𝑘 = 10, 𝛽 = .3) .4705
𝑎

.9793
𝑎𝑏

.7326
𝑎𝑏

.6963
𝑎𝑏

.6993
𝑎𝑏

–

BB+PRF-A(𝑘 = 10, 𝛼 = .3, 𝛽 = .7) .4955𝑎𝑏 .9690
𝑎𝑏

.7519
𝑎𝑏

.7385
𝑎𝑏 .7210𝑎𝑏 –

R+PRF+B(𝑘 = 5, 𝛽 = .5) .4463
𝑑

.9388 .7209 .7371 .6968 .7097
𝑑

A+PRF+B(𝑘 = 5, 𝛼 = .4, 𝛽 = .6) .4514
𝑑

.9388 .7209 .7390 .6953 .6997
𝑑

R+PRF-R(𝑘 = 10, 𝛽 = .3) .3669
𝑐

.9368 .7054
𝑐

.6559
𝑎𝑏𝑐

.6252
𝑎𝑏

.7012
𝑏𝑐

A+PRF-A(𝑘 = 10, 𝛼 = .4, 𝛽 = .6) .4151
𝑐

.9440
𝑎

.7403
𝑎𝑏

.6807
𝑎𝑏

.6629
𝑎𝑏

.6962
𝑏𝑐

T
r
e
c
D
L
2
0
2
0

BM25 .2856 .6585 .5772 .5021 .4796 .7863

BM25+RM3 .3019 .6360 .5648 .4740 .4821 .8217
BM25+BERT (BB) .4926 .8531 .7901 .7598 .7064 .7863

RepBERT+BERT (R+B) .4358 .9082 .7099 .7276 .6715 .6593

ANCE+BERT (A+B) .4470 .9082 .7037 .7243 .6768 .6819

RepBERT (R) .3733 .8109 .7315 .6572 .6047 .7888

ANCE (A) .4076 .7907 .7346 .7082 .6458 .7764

BB+PRF(𝑘 = 3,SW,BORDA) .4644
𝑎𝑏

.8575
𝑎𝑏

.8179
𝑎𝑏 .7798𝑎𝑏 .6739

𝑎𝑏
–

BB+PRF-R(𝑘 = 5, 𝛼 = .4, 𝛽 = .6) .4778
𝑎𝑏

.8638
𝑎𝑏 .8333𝑎𝑏 .7544

𝑎𝑏 .7111𝑎𝑏 –

BB+PRF-A(𝑘 = 1, 𝛼 = .5, 𝛽 = .5) .4606
𝑎𝑏𝑐

.8476
𝑎𝑏

.7963
𝑎𝑏

.7691
𝑎𝑏

.6984
𝑎𝑏

–

R+PRF+B(𝑘 = 3, 𝛼 = .4, 𝛽 = .6) .4530
𝑑

.9050 .7099 .7320 .6750 .7022
𝑑

A+PRF+B(𝑘 = 3, 𝛼 = .4, 𝛽 = .6) .4584
𝑑 .9097 .7037 .7297 .6791 .7019

𝑑

R+PRF-R(𝑘 = 1, 𝛼 = .6, 𝛽 = .4) .4239
𝑎𝑏𝑐

.7951
𝑎𝑏

.7315
𝑎𝑏

.6991
𝑎𝑏

.6393
𝑎𝑏

.8159
𝑐

A+PRF-A(𝑘 = 3, 𝛼 = .4, 𝛽 = .6) .4341
𝑎𝑏𝑐

.8079
𝑎𝑏

.7407
𝑎𝑏

.7117
𝑎𝑏

.6598
𝑎𝑏

.7948

T
r
e
c
C
A
s
T

BM25 .2936 .6502 .3631 .3542 .3526 .8326
BM25+RM3 .3132 .6556 .3971 .3829 .3817 .8246

BM25+BERT (BB) .3762 .8108 .5425 .5366 .5269 .8326
RepBERT+BERT (R+B) .3036 .7741 .4953 .5002 .4901 .6284

ANCE+BERT (A+B) .3007 .7665 .4855 .4998 .4890 .6179

RepBERT (R) .1969 .6604 .4307 .4087 .3752 .6284

ANCE (A) .2081 .6819 .4396 .4246 .3823 .6179

BB+PRF(𝑘 = 10,CC) .3247
𝑎𝑐

.8106
𝑎𝑏

.5510
𝑎𝑏𝑐

.5140
𝑎𝑏

.4838
𝑎𝑏𝑐

–

BB+PRF-R(𝑘 = 3, 𝛼 = .5, 𝛽 = .5) .3372
𝑎𝑐

.7985
𝑎𝑏

.5480
𝑎𝑏

.5468
𝑎𝑏

.5067
𝑎𝑏𝑐

–

BB+PRF-A(𝑘 = 3, 𝛼 = .3, 𝛽 = .7) .3274
𝑎𝑐

.8093
𝑎𝑏 .5914𝑎𝑏 .5583𝑎𝑏 .5055

𝑎𝑏𝑐
–

R+PRF+B(𝑘 = 5, 𝛼 = .4, 𝛽 = .6) .3162
𝑑

.7722 .4915 .5023 .4909 .6635
𝑑

A+PRF+B(𝑘 = 3, 𝛼 = .3, 𝛽 = .7) .3153
𝑑

.7725 .4991 .5043 .4939 .6432
𝑑

R+PRF-R(𝑘 = 10, 𝛼 = .8, 𝛽 = .2) .2150
𝑎𝑏𝑐

.6618 .4498
𝑎

.4146
𝑎

.3844
𝑐

.6566
𝑎𝑏𝑐

A+PRF-A(𝑘 = 3, 𝛽 = .9) .2347
𝑎𝑏𝑐

.6826 .4626
𝑎

.4434
𝑎𝑏𝑐

.4138
𝑎𝑐

.6508
𝑎𝑏𝑐

W
e
b
A
P

BM25 .0436 .3099 .1667 .1604 .1404 .2944

BM25+RM3 .0536 .2767 .1344 .1316 .1376 .3472

BM25+BERT (BB) .0845 .5856 .4042 .3356 .2897 .2944

RepBERT+B (R+B) .1088 .5859 .4042 .3361 .2939 .4133

ANCE+BERT (A+B) .1090 .5846 .4010 .3315 .2973 .3956

RepBERT (R) .0867 .4653 .2875 .2580 .2419 .4133

ANCE (A) .0886 .5107 .3469 .2863 .2638 .3956

BB+PRF(𝑘 = 15,CA,AVG) .0855
𝑎𝑏

.5459
𝑎𝑏

.3271
𝑎𝑏 .3444𝑎𝑏 .2980

𝑎𝑏
–

BB+PRF-R(𝑘 = 1, 𝛼 = .7, 𝛽 = .3) .0809
𝑎𝑏

.5866
𝑎𝑏 .4198𝑎𝑏 .3418

𝑎𝑏
.2708

𝑎𝑏
–

BB+PRF-A(𝑘 = 3, 𝛽 = .8) .0790
𝑎𝑏𝑐

.5502
𝑎𝑏

.4083
𝑎𝑏

.3394
𝑎𝑏

.2842
𝑎𝑏

–

R+PRF+B(𝑘 = 3, 𝛼 = .3, 𝛽 = .7) .1146𝑑 .5880 .4042 .3383 .2995
𝑑 .4253

A+PRF+B(𝑘 = 5, 𝛼 = .4, 𝛽 = .6) .1134
𝑑

.5790 .3885 .3308 .2996 .4202

R+PRF-R(𝑘 = 3, 𝛽 = .1) .0887
𝑎𝑏𝑐

.4690
𝑎𝑏

.2969
𝑎𝑏

.2594
𝑎𝑏

.2433
𝑎𝑏

.4206
𝑎𝑏𝑐

A+PRF-A(𝑘 = 3, 𝛽 = .9) .0953
𝑎𝑏𝑐

.5134
𝑎𝑏

.3563
𝑎𝑏

.2928
𝑎𝑏

.2710
𝑎𝑏

.4027
𝑎𝑏

D
L
-
H
a
r
d

BM25 .1845 .5422 .3533 .3137 .2850 .6288

BM25+RM3 .1925 .4381 .2467 .2508 .2555 .6522

BM25+BERT (BB) .2521 .6139 .4133 .4012 .3962 .6288

RepBERT+B (R+B) .2401 .6393 .4433 .4095 .3929 .6797

ANCE+BERT (A+B) .2386 .6405 .4433 .4150 .3934 .6564

RepBERT (R) .1576 .5489 .3200 .3263 .2982 .6797

ANCE (A) .1803 .5382 .3733 .3450 .3339 .6564

BB+PRF(𝑘 = 3,CA,BORDA) .2380
𝑎

.5937
𝑏

.4333
𝑏

.3944
𝑏

.3550
𝑎𝑏𝑐

–

BB+PRF-R(𝑘 = 5, 𝛼 = .8, 𝛽 = .2) .2255
𝑐

.5843
𝑎𝑏

.3867
𝑏

.3861
𝑏

.3646
𝑎𝑏𝑐

–

BB+PRF-A(𝑘 = 5, 𝛼 = .4, 𝛽 = .6) .2422
𝑎

.5904
𝑎𝑏

.4333
𝑏 .4267𝑎𝑏 .3968𝑎𝑏 –

R+PRF+B(𝑘 = 5, 𝛽 = .2) .2439
𝑑

.6394 .4433 .4095 .3926 .6968𝑑

A+PRF+B(𝑘 = 5, 𝛼 = .8, 𝛽 = .2) .2419
𝑑 .6405 .4433 .4150 .3941 .6683

𝑑

R+PRF-R(𝑘 = 5, 𝛼 = .9, 𝛽 = .1) .1654 .5504
𝑏

.3333 .3368 .3030 .6929
𝑐

A+PRF-A(𝑘 = 10, 𝛽 = .4) .1865 .5426 .3933
𝑏

.3453 .3380
𝑏

.6681
𝑐
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shallow metrics values on DL HARD are far below those in TREC DL 2019 and 2020 (which share the same passages):

this means that the passages used for PRF are likely not relevant, thus possibly causing query drift.

To summarize, our proposed BB+PRF approach achieves substantially better results than BM25 and BM25+RM3.

However, the improvements over BM25+BERT are more patchy, and are mostly achieved for shallow metrics. We put

this down to the length of the text passages formed by the PRF methods: these are substantially longer than the passages

used to train/�ne-tune the BERT reranker.

5.4.2 Reranking with Vector-Based PRF (BB+PRF-R, BB+PRF-A). When RepBERT is used as the base model (BB+PRF-R),

for TREC DL 2019, improvements are obtained for RR and nDCG@1, while no improvements are obtained on the

remaining metrics. For TREC DL 2020, we observe improvements over shallow metrics only (RR, nDCG@{1, 10}). For

TREC CAsT 2019, the improvements are observed at nDCG@{1, 3}, but nDCG@10 is signi�cantly worse than the

baseline, and so is MAP. For WebAP, we observe improvements in shallow metrics as well (RR, nDCG@{1, 3}). For DL

HARD, there are no improvements over all reported metrics; on the contrary, it performs signi�cantly worse than the

baseline on MAP and nDCG@10.

With ANCE as the base model (BB+PRF-A), for TREC DL 2019, all shallow metrics (RR, nDCG@{1, 3, 10}) and MAP

are improved. For TREC DL 2020 and DL HARD, improvements are found at nDCG@{1, 3, 10}. For TREC CAsT and

WebAP, we observe improvements over nDCG@{1, 3} for both datasets.

To summarize, the proposed vector-based PRF as reranker (BB+PRF-R, BB+PRF-A): (1) it improves the e�ectiveness

over BM25+BERT across several metrics and for all datasets, (2) it achieves substantially better results than BM25,

BM25+RM3, and RepBERT/ANCE, except on DL HARD, (3) it provides mixed results when compared with BM25+BERT,

with no clear pattern of improvements (or de�ciencies) across measures and datasets.

5.4.3 Reranking with BERT on Top of Vector-Based PRF (R+PRF+B, A+PRF+B). R+PRF+B signi�cantly improves MAP

and R@1000 on all datasets except WebAP. All other results are either on par or slightly better (not signi�cant) than the

baseline. Moreover, R+PRF+B signi�cantly improves nDCG@10 on WebAP compared to the baseline. However, the

gain from R@1000 is mainly due to the gain obtained where moving from R to R+PRF: the reranking step does not

contribute to this gain.

The trend for A+PRF+B is similar to that of R+PRF+B: it signi�cantly improves MAP and R@1000 across all datasets

except WebAP. A+PRF+B achieves the best e�ectiveness for nDCG@10 on WebAP, although e�ectiveness are not

signi�cant. All other results are either on par or slightly better than the baseline.

To summarize, the use of the BERT reranker on top of vector-based PRF signi�cantly improves MAP, but for other

metrics, improvements are not statistically signi�cant.

5.4.4 Retrieval with Vector-Based PRF (R+PRF-R, A+PRF-A). For R+PRF-R, results show similar trends on all datasets:

improvements can be observed on all reported metrics (MAP, RR, R@1000, and nDCG@{1, 3, 10}, except on TREC DL

2020, where PRF performs worse than the RepBERT baseline for RR.

For A+PRF-A, PRF performs better than ANCE baseline on all evaluation metrics and across all datasets. The

improvements in MAP are signi�cant in TREC DL 2019, TREC DL 2020, TREC CAsT, and WebAP; the improvements

for R@1000 are signi�cant in TREC DL 2019, TREC CAsT, and DL HARD. Signi�cant improvements in nDCG@{3, 10}

are found only in TREC CAsT. Overall, A+PRF-A achieve higher e�ectiveness than R+PRF-R: ANCE per se is a stronger

model than RepBERT, thus encoding more relevant information from the text. Hence, when PRF uses ANCE, it can

better encode the additional relevance signals, leading to enhanced e�ectiveness.
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Table 4. Results of vector-based PRF for the task of retrieval, using dense retrievers more e�ective than ANCE and RepBERT. We
randomly choose and fix the parameters for Rocchio and Average in all the experiments in this table, where Average PRF depth is 3,
Rocchio PRF depth is 5. We also fix 𝛼 and 𝛽 for Rocchio to be 0.4 and 0.6 respectively. The best results for each model are marked in
Bold.

Model Method MAP RR nDCG@1 nDCG@3 nDCG@10 nDCG@100 R@1000

T
R
E
C
D
L
2
0
1
9

TCT-ColBERT V1

Original 0.3864 0.9512 0.7326 0.6874 0.6700 0.5730 0.7207

Average 0.4457 0.8999 0.6705 0.6779 0.6639 0.6119 0.7570

Rocchio 0.4479 0.9368 0.7093 0.7083 0.6875 0.6143 0.7720

TCT-ColBERT V2 HN+

Original 0.4626 0.9767 0.8023 0.7410 0.7204 0.6318 0.7603

Average 0.5123 0.9767 0.7713 0.7454 0.7312 0.6719 0.8115

Rocchio 0.5161 0.9244 0.7248 0.7129 0.7111 0.6684 0.8147

DistilBERT KD

Original 0.3759 0.9306 0.7558 0.7370 0.6994 0.5765 0.6853

Average 0.4362 0.9253 0.7481 0.7241 0.7096 0.6217 0.7180

Rocchio 0.4378 0.9345 0.7442 0.7286 0.7052 0.6189 0.7291

DistilBERT Balanced

Original 0.4761 0.9510 0.7558 0.7494 0.7210 0.6360 0.7826

Average 0.5057 0.9458 0.7364 0.7383 0.7190 0.6526 0.8054

Rocchio 0.5249 0.9359 0.7364 0.7386 0.7231 0.6684 0.8352

SBERT

Original 0.4097 0.9767 0.8372 0.7642 0.6930 0.5985 0.7201

Average 0.4565 0.9413 0.7403 0.7326 0.7001 0.6149 0.7357

Rocchio 0.4578 0.9355 0.7558 0.7448 0.6952 0.6149 0.7405

T
R
E
C
D
L
2
0
2
0

TCT-ColBERT V1

Original 0.4290 0.8183 0.7500 0.7245 0.6678 0.5826 0.8181

Average 0.4725 0.8220 0.7346 0.7253 0.6957 0.6101 0.8667
Rocchio 0.4625 0.8392 0.7840 0.7410 0.6945 0.6056 0.8576

TCT-ColBERT V2 HN+

Original 0.4754 0.8392 0.7932 0.7199 0.6882 0.6206 0.8429

Average 0.4811 0.8212 0.7870 0.7386 0.6836 0.6228 0.8579
Rocchio 0.4860 0.8154 0.7685 0.7273 0.6804 0.6254 0.8518

DistilBERT KD

Original 0.4159 0.8215 0.7284 0.7113 0.6447 0.5728 0.7953

Average 0.4214 0.7715 0.7130 0.6911 0.6316 0.5755 0.8403

Rocchio 0.4145 0.7703 0.7037 0.6823 0.6289 0.5760 0.8433

DistilBERT Balanced

Original 0.4698 0.8350 0.7593 0.7426 0.6854 0.6346 0.8727

Average 0.4887 0.8380 0.7809 0.7510 0.7086 0.6449 0.9030
Rocchio 0.4879 0.8641 0.8056 0.7564 0.7083 0.6470 0.8926

SBERT

Original 0.4124 0.7995 0.7346 0.6870 0.6344 0.5734 0.7937

Average 0.4258 0.7619 0.6728 0.6723 0.6412 0.5781 0.8169

Rocchio 0.4342 0.7941 0.7160 0.7032 0.6559 0.5851 0.8226

To summarize, our proposed A+PRF-A and R+PRF-R models work well across all datasets and metrics. They also

achieve substantial improvements over BM25 and BM25+RM3 baselines across almost all metrics, and they outperform

the BM25+BERT baseline on several metrics.

5.4.5 Generalizability to Other Dense Retrievers. The results shown in Table 4 demonstrate that vector-based PRF

consistently improves the e�ectiveness even where dense retrievers more e�ective than ANCE and RepBERT are used.

Vector-based PRF tends to improve nDCG@3,10 (for the majority of the dense retrievers), MAP, nDCG@100, and

R@1000 for all models in both TREC DL 2019 and TREC DL 2020. However, vector-based PRF does not improve RR and

nDCG@1 in a consistent manner.

5.4.6 Summary. To answer RQ4, our results suggest that PRF used for either reranking or retrieval can improve

e�ectiveness as measured across several metrics. More speci�cally, compared to the respective baselines, R+PRF-R

and A+PRF-A tend to deliver improvements across all metrics and datasets, except for RR on TREC DL 2020 with

RepBERT as base model. On the other hand, BB+PRF tends to only improve shallow metrics, especially when compared
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Table 5. �ery latency of the investigated methods on TREC DL 2019: the lower latency, the be�er (faster).

Models Latency (ms/q)

Baselines

BM25 (Anserini) 81

BM25 + RM3 (Anserini) 140

RepBERT(R) 93

ANCE(A) 94

RepBERT+BERT(R+B) 3,324

ANCE+BERT(A+B) 3,327

Vector-based PRF

Retriever

R+PRF-R-Average 163

R+PRF-R-Rocchio 163

A+PRF-A-Average 173

A+PRF-A-Rocchio 174

Vector-based PRF

Reranker

BB+PRF-R-Average 3,411

BB+PRF-R-Rocchio 3,414

BB+PRF-A-Average 3,409

BB+PRF-A-Rocchio 3,414

Text-based PRF

Reranker

BB+PRF(𝑘 = 5)-CT 6,889

BB+PRF(𝑘 = 5)-CA 17,266

BB+PRF(𝑘 = 5)-SW 22,314

Vector-based PRF

with BERT Reranker

R+PRF(Average)+B 3,395

R+PRF(Rocchio)+B 3,397

A+PRF(Average)+B 3,419

A+PRF(Rocchio)+B 3,421

BERT Reranker

BM25 + BERT(BB) 3,246

BM25 + BERT Large 9,209

to BM25, BM25+RM3, and dense retriever baselines; BB+PRF-R and BB+PRF-A exhibit similar trends. Applying the

BERT reranker on top of vector-based PRF signi�cantly improves MAP, and outperforms the baseline on all metrics, but

not signi�cantly for the remaining metrics on all datasets with both R+PRF+B, A+PRF+B, and nDCG@10 on WebAP

with R+PRF+B.

5.5 E�iciency of PRF

RQ5: What is the impact of PRF models on the e�ciency of reranking and retrieval?
To answer this question, we study the e�ciency of the PRF approaches and the baseline models. Low query latency –

the time required for a ranker to produce a ranking in answer to a query – is an essential feature for the deployment

of retrieval methods into real-time search engines. The query latency of the investigated methods is summarised in

Table 5 and Figure 13
4
.

The dense retrievers studied in this work (R and A) have a comparable query latency to BM25, with the latter being

10ms faster. Applying vector-based PRF to dense retrievers (R+PRF-R and A+PRF-A) has a comparable impact on

query latency to BM25+RM3, with the latter being 23–34ms faster. The latency values measured in our experiments

are compatible with the requirements of real-time search engines. On the other hand, applying vector-based PRF to

BM25+BERT, as a reranking stage(BB+PRF-R and BB+PRF-A), has a high query latency, similar to that of BM25+BERT.

4
We have produced a fully annotated version of this image that includes each model name and made it available for online consultation at: https:

//github.com/ielab/Neural-Relevance-Feedback-Public/blob/master/�gures/trade-o�-with-label.pdf
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Fig. 13. Trade-o� between e�ectiveness and e�iciency for all methods in our experiments. E�ectiveness is measured using nDCG@10,
and e�iciency is measured using log(𝑚𝑠/𝑞) . The sparse baselines (BM25 and BM25+RM3) cluster on the le� bo�om corner (red box).
Dense based approaches, including ANCE, RepBERT, and our Vector-based PRF approaches cluster on the center le� (green box). All
rerankers, i.e., BM25+BERT(base/large), Text-based PRF, BM25+BERT+Vector-based PRF, Vector-based PRF+BERT reranker, cluster
on the top right side (blue box); these methods present the worst e�iciency compared to others. The black line shows the trade-o�
trend between e�ectiveness and e�iciency.

Lastly, we found the two-stage BM25+BERT-Large to be the least e�cient (up to 2 orders of magnitude slower than other

methods) except the text-based PRF approaches(BB+PRF). While BERT and BERT-Large reranking models consider only

the top 1,000 passages from BM25, their query latency remains impractical for real-time search engines, the BB+PRF

approaches actually creates more queries from one original query, hence leads to worse query latency overall.

In terms of applying BERT on top of Vector-based PRF approaches, the e�ciency is similar to the Vector-based PRF

reranker and the BERT reranker, which is much lower than the Vector-based PRF approaches because of the additional

BERT inference time. As for BERT, this approach is also impractical for real-time search engines.

We also analysed the relationship between query length (either original query, or query plus PRF signal) and latency.

For BM25 and BM25+RM3, query latency increases with the increase of query length: the longer the query (including

the PRF component), in fact, the more posting lists need to be traversed. On the other hand, query length does not

a�ect the query latency of ANCE or RepBERT
5
, because the query is converted to �xed length vectors: no matter how

many words in the query, the generated query vector is always of the same length. This same reasoning applied for the

vector-based PRF approaches: even when increasing the number of PRF passages considered (𝑘), the query latency

remains unchanged. As for the text-based PRF, we cut-o� the query (including the revised query after PRF) to the

length of 256 tokens, and before the query/passage pair is passed to BERT, the pair is padded to be of a total length of

5
If not just noticeably because more tokens need to be passed through the tokenizer.
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512 tokens. Thus, no matter how long the query is (including possibly PRF), the sequence passed to BERT is always 512

tokens long. The reason for padding the input for BERT is that for each batch of query-passage pairs passed to BERT,

the pairs in a batch need to be of the same length. The batching mechanism is useful for e�ciently exploiting the GPU

processing. In such cases, the query latency of the text-based PRF does not change with the increase of query length. A

factor instead that does greatly a�ect the e�ciency of text-based PRF with CA or SW is the depth of PRF. The more

PRF passages, in fact, the more BERT inferences are required at run time, and thus the higher the query latency. For

example, one original query with PRF depth at 5, the CA will generate 5 new queries, each for one feedback passage. So

for each original query, it only needs one inference for BM25+BERT, but with the new queries from CA, it needs 5 more

inferences, combined with BM25+BERT, it requires 6 inferences in total, similar for SW. (Table 5)

6 USE-CASE ANALYSIS

To complement our analysis of the results and separate from our core research questions, we further analysed the

results for a subset of the queries to gain a qualitative understanding of when, and possibly why, the PRF methods work

– or don’t. For this, we limit our analysis to the retrieval task and the ANCE and Vector-based PRF with Rocchio with

𝑘 = 5.

Figure 14(top) presents a query-by-query analysis of the gains and losses of Vector-based PRF (Rocchio) with respect

to ANCE on the combined set of TREC DL 2019 and 2020 queries. The e�ectiveness measure used is nDCG@5 and

gains and losses are represented by bars in the �gure. We used nDCG@5 for this analysis and not the rank cut-o�s we

have reported for other analyses to align the evaluation cut-o� with the cut-o� used for the feedback signal, i.e. the PRF

depth 𝑘 , which was also 5. The observations that follow, based on nDCG@5, are also found when other rank cut-o�s

are considered.

As one would expect, there are a number of queries for which the PRF method experiences losses, and other queries

for which gains are observed; interestingly there is a considerable amount of queries for which neither gains nor losses

are found. We further veri�ed whether the encoding of the query obtained via PRF is di�erent from that of the original

query. This is done especially for the cases in which neither gains nor losses are observed: does this happen because

there is no di�erence between the representation of the original query and of the query after PRF? We performed

this analysis by comparing the two dense representations using the inner product between the encoding vectors. We

found that the similarity between the initial query encoding and the one obtained with PRF varies across queries and

that queries for which neither gains nor losses are obtained, are no di�erent in terms of di�erence between query

representations compared to queries that exhibit gains or losses (�gure not shown here, but available in the online

appendix
6
). In other words, the amount by which PRF changes the initial query representation is not directly associated

with a gain or a loss, and queries for which no di�erence in e�ectiveness is found are often characterised by di�erences

between the original and PRF representations of the query.

For each query, Figure 14 (top) also reports the amount of overlap between the top 𝑘 passages retrieved by the �rst

stage of retrieval (ANCE) – this is e�ectively the signal that is used as input to the PRF method – and the top 𝑘 passages

retrieved by the PRF method. The overlap is reported in percentage of the top 𝑘 passages that are in common between

the two sets; 𝑘 = 5 and thus an overlap of 80% means that 4 out of 5 passages are in common. This statistic helps us to

analyse whether the PRF method ended up just re-ranking the top 𝑘 passages from the �rst stage, or it did push into

the top 𝑘 ranks passages that were not there before. Losses in e�ectiveness for the PRF method tend to be associated

6
https://github.com/ielab/Neural-Relevance-Feedback-Public
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Fig. 14. The query-by-query analysis on the combined set of TREC DL 2019 and 2020 queries of (1) the gain/loss obtained by
Vector-based PRF(Rocchio) with respect to ANCE, as represented by the barplot at the top, (2) the retrieved passages overlap, as
represented by the red dots in the top plot, (3) and the analysis of the passage relevance for the feedback signal provided as input to
the PRF (top 𝑘 = 5 passages from ANCE – mid plot) and the top 5 passages retrieved by the PRF method (bo�om plot).

with re-ranking of the top 𝑘 passages from the �rst stage of retrieval: the average overlap for these queries is 85.2%.

And thus, these losses are not caused by retrieving less of the relevant passages, or passages that are less relevant (e.g.

marginally relevant instead of highly relevant); they are instead caused by re-ordering the passages from the �rst stage

in a less e�ective manner. On the other hand, gains instead have a higher tendency to be associated with the ability of

the PRF method to bring into the top 𝑘 additional, new relevant passages compared to what the �rst stage of retrieval

could do: the average overlap for these queries is 82.8%. Di�erences, however, are not statistically signi�cant (Pearson’s

Chi-squared test).

Figure 14 (mid) presents an analysis of the relevancy of the top 𝑘 passages in the �rst stage of retrieval, while

Figure 14 (bottom) presents an analysis of the relevancy of the top 𝑘 passages after PRF. Remember that the relevancy

of the top 𝑘 passages in the �rst stage of retrieval in all e�ects represents the quality of the feedback signal that is

passed as input to the PRF method. Each stacked column refers to a speci�c query, and the column is aligned to the

gain-loss plot (Figure 14 (top)) so that it is possible to directly compare the relevancy of the PRF signal and the gain

or loss produced by the PRF method. No obvious pattern appears at �rst sight. PRF signals that contain non-relevant

documents produce results that can go either way: at times losses are obtained, but it is also common to obtain gains (or

even have no e�ect at all). However, a more scrupulous examination of this signal leads to an interesting observation.

We do this by examining the �ve queries with largest losses, and then the �ve queries with the largest gains for which

there is at least one non-relevant passage. We observe the following. Non-relevant passages for queries that display

losses are largely o� topic: they have a very weak relationship to the query, if at all. For example, for query 1110678:

what is the un fao, the PRF signal includes 4 non-relevant passages, and these passages are related to the card
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game Uno; they have nothing to do with the United Nations FAO program. A subset of these passages (along with

other examples) are presented in Table 6. Another similar example is query 169208: does mississippi have an

income tax, for which the PRF signal includes 3 non-relevant passages and, while they are related to tax and the state

of Mississipi, they are about unemployment or start-up tax and thus not relevant to the need of information about the

more general income tax. When this type of feedback is used in the PRF mechanism, the new query representation

displays query drift, and it does score higher passages that are non-relevant, but are related to those in the feedback

signal (e.g., for query 1110678 many top retrieved passages by PRF are related to Uno, even beyond the top 𝑘). This

situation instead does not occur when we examine the PRF signal of queries for which PRF provides a gain. In particular,

while this signal does still contain non-relevant passages, the non-relevancy nature of these passages is di�erent from

that of passages for which losses are found. Let us unwrap this with actual examples. The PRF method exhibits a large

gain for query 1136047: difference between a company’s strategy and business model is, despite the PRF

signal for this query displays several non-relevant passages. These non-relevant passages, shown in Table 6, however,

do display a strong aboutness relation [40] with the query, for example by mentioning the key terms of the query –

and when this is used in the PRF mechanism it would help reinforce the query representation. We also note that the

non-relevant label assigned to some of these passages by the original TREC assessors may be somewhat questioned: for

example passage 8724036 for query 1136047 appears to us as at least marginally relevant. Other example queries that

display a pattern similar to that of query 1136047 are included in Table 6.

7 DISCUSSION

Integrating PRF with deep language models has two main challenges: computational cost and input size limit, which can

be roughly mapped to e�ciency and e�ectiveness, respectively. Previous research has focused mainly on e�ectiveness,

and applying PRF as a second stage that considers a subset of the data collection, to mitigate the computational cost.

For instance, Zheng et al. [75] proposed a PRF framework which is divided into three phases, each involving BERT, to

rerank passages and chunks of text after the initial retrieval. Similarly, Wang et al. [58] applied PRF to the second stage

retrieval, utilising BERT for reranking sentences. Other work that applied PRF to the �rst stage retrieval has limited the

second phase of retrieval to a subset of the collection, either to depth of 500 [68] or 1000 [25]. We argue that the main

limitation with these approaches is related to the �rst stage retrieval model they employed — if the �rst stage is basic

bag-of-words then the overall method inherits many of this models limitations.

To address the applicability, e�ectiveness, and e�ciency of text-based, vector-based and hybrid PRF approaches, we

compared them over two di�erent tasks, retrieval for vector-based PRF and reranking for both text-based and hybrid

PRF. While the text-based and hybrid PRF approaches handle the input size limit, we showed that they enhance the

ranking e�ectiveness only marginally. This �nding aligns with previous research, but we demonstrated it happens

at the cost of e�ciency. The BERT model is slow (ranking 1,000 passages for each query takes 9,209 ms), rendering

text-based and hybrid PRF approaches infeasible and inapplicable to real-time search engines for this task, as shown in

Figure 13. On the other hand, our proposed vector-PRF approach is substantially more e�cient: it only takes 163-174

ms to process one query. In addition, it does so while also improving the e�ectiveness of dense retrievers in terms of

all metrics compared to ANCE and RepBERT (for retrieval), and in terms of shallow metrics compared to BERT (for

reranking).

7
Two other, similar non-relevant passages appearing in the top 𝑘 = 5 for this topic are omitted from the table for space reasons.
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Table 6. Example queries for which the Vector-based PRF (Rocchio) method produces losses/gains, along with example non-relevant
passages ranked in the top 𝑘 from the first stage ranker (and thus used as input to PRF).

Query ID Query Passage
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169208 does mississippi have an income tax
7

2888361: Unemployment Tax Rates. Reporting and Filing. In Mississippi, the tax

rate for a start-up business is 1.00% the �rst year of liability, 1.10% the second year

of liability and 1.20% the third and subsequent years of liability until the employer is

eligible for a modi�ed rate

1037798 who is robert gray

2868740: (Redirected from Gary Leroi Gray) Gary LeRoi Gray (born February 12,

1987) is an actor and voice actor involved with movies, television, and animation.

He is most recognized for his childhood role as Nelson Tibideaux, the son of Sondra

Huxtable Tibideaux and Elvin Tibideaux on the NBC sitcom The Cosby Show. He

appeared on the series during its eighth and �nal season (1991-1992).

2866248: Matthew Gray Gubler. Matthew Gray Gubler is an Emmy award winning

actor, director, producer, painter, and voice over actor from Las Vegas Nevada. While

studying �lm directing at NYU he interned for Wes Anderson who gave him his �rst

feature �lm role as Bill Murray’s loyal intern Nico in The Life Aquatic with Steve

Zissou (2004). For the past eleven years Gubler ...

1110678 what is the un fao
7

5253767: Uno (/EuEnoE/; from Italian and Spanish for ‘one’) (stylized as UNO) is an

American card game that is played with a specially printed deck (see Mau Mau for an

almost identical game played with normal playing cards). The game was originally

developed in 1971 by Merle Robbins in Reading, Ohio, a suburb of Cincinnati.

3386130: Uno (card game) For the video game adaptation, see Uno (video game). Uno

(/EuEnoE/; from Italian and Spanish for ‘one’) (stylized as UNO) is an American card

game that is played with a specially printed deck (see MauMau for an almost identical

game played with normal playing cards). The game was originally developed in 1971

by Merle Robbins in Reading, Ohio, a suburb of Cincinnati.
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1129237 hydrogen is a liquid below what

temperature

8588226: Hydrogen is a liquid below what temperature? was asked by Shelly Note-

taker on May 31 2017. 426 students have viewed the answer on StudySoup. View the

answer on StudySoup. Sign Up Login

8588222: Answer to: Hydrogen is a liquid below what temperature? By signing up,

you’ll get thousands of step-by-step solutions to your homework questions.... for

Teachers for Schools for Companies

87181 causes of left ventricular hypertrophy

47203: Causes of Right Ventricular Hypertrophy. There are four usual causes of right
ventricular hypertrophy. The �rst one is pulmonary hypertension. As stated earlier,

pulmonary hypertension is a condition wherein the blood pressure increases in the

pulmonary artery. And this can lead to shortness of breath, dizziness and fainting.

1136047
di�erence between a company’s

strategy and business model is

8724032: 6. The di�erence between a company’s business model and a company’s

strategy is that: a. a company’s business model is - Answered by a veri�ed Business

Tutor

8724038: Now, we address our second question. What is the di�erence between a

strategy and a business model? A strategy is about the external logic of a business.

How are we going to compete? Check out my earlier post on the elements of a

strategy for more about strategies. A business model is about the internal logicâ¦

8724036: Now, we address our second question. What is the di�erence between a

strategy and a business model? A strategy is about the external logic of a business.

How are we going to compete? Check out my earlier post on the elements of a

strategy for more about strategies. A business model is about the internal logic of the

business. See my post on the elements of a business model. Does it make operational

and economic sense? Do all of the pieces �t together? A business model is a tool that

complements both a business strategy and a business plan. It is an important tool

because 1) it ensures that you understand the logic of your business; and, 2) it helps

you communicate the logic of your business. Of course, this begs the question, what

is a business plan?

We also apply the BERT reranker on top of Vector-based PRF approaches. Although this indeed improves e�ectiveness

across all evaluation metrics, only improvements on MAP are signi�cant on all datasets, and R+PRF+B signi�cantly

improves nDCG@10 on WebAP only. On the other hand, R@1000 is signi�cantly improved across several datasets, but

this improvement comes from the gain produced by the Vector-based PRF compared to the respective dense retrievers.
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The BERT reranker used as a strong baseline in our experiments is an o�-the-shelf model, originally produced

by Nogueira and Cho [46]. This model is �ne-tuned on the training set of the MS MARCO Passage Retrieval Dataset.

The query length in this training set is much shorter than the newly formed queries from the text-based PRF approaches.

This causes a mismatch between training and testing data. Theoretically, if the testing data is signi�cantly di�erent from

the trained data data used to �ne-tune the model, the model itself will be less e�ective. Despite this, in our experiments

we found that the formed long PRF queries still signi�cantly improve results for some metrics across several datasets

(although improvements are often only marginal) – but in the majority of cases their e�ectiveness is worse than that

of BM25+BERT. It will then be interesting to investigate whether the e�ectiveness of text-based PRF can be further

improved by �ne-tuning the BERT model with long PRF queries, hence eliminating the training/testing data mismatch.

On the other hand, vector-based PRF is not a�ected by this issue, because the query vector is of �xed length: no matter

how many PRF passages are added to the original query vector, the query vector formed via PRF maintains the same

length, and thus no training/testing data mismatch occurs. Another advantage of vector-based PRF over the text-based

is that, although its e�ectiveness might be improved signi�cantly after �ne-tuning on long PRF queries, the text-based

PRF approach is still ine�cient and it is infeasible to apply it to real-time settings.

As complementary experiments, we also executed the retrieval task and re-ranking task on the MS MARCO dev

queries. We omit the detailed results for these experiments from the manuscript in the interest of space and focus;

however we make them available in the online appendix
8
and we provide a summary of the observations next.

For both retrieval and re-ranking tasks on the MS MARCO dev queries, we found no improvement over the non-PRF

baselines. This is unlike in the TREC DL datasets, where improvements are observed. We believe that the reason for

this di�erence is to be found on the largely sparse annotated nature of MS MARCO vs. the more complete relevance

annotations in TREC DL. One may argue that other neural PRF methods, such as ANCE-PRF, have shown improvements

on MS MARCO too, and not just on TREC DL. However, we stress an important di�erence. Both the baseline dense

retrievers and the learnt PRF methods (i.e. ANCE-PRF and the likes) are trained so as to build representations of the

single “gold” (i.e. relevant) MS MARCO passage that are close to the query (for ANCE-PRF: representations of the query

after PRF that are close to the gold MS MARCO passage). Thus, in the context of trained PRF methods like ANCE-PRF,

the query representation is changed to become closer to the single MS MARCO target gold passage. Our PRF method

changes the query representation (and consequently perturbs the ranking) based on the representation of the top 𝑘

passages alone: there is no notion of a gold passage towards which such new representation should be moved. This

means these non-learnt vector-based PRF methods are not suitable to situations in which a single golden passage exists,

for example for the task of known item retrieval – and this is shown by the MS MARCO results too. However, this does

not mean these methods are not suitable when there is an array of relevant passages to be retrieved; and this in fact is

what the TREC DL results show.

8 CONCLUSION

This article investigated the integration of PRF within transformer-based deep language models and dense retrievers

for retrieval and reranking. In this context, a text-based PRF approach, applicable to the reranking task only, and a

vector-based PRF approach, applicable to both retrieval and reranking tasks, were proposed to leverage the relevance

signals from the feedback passages. The proposed approaches are based on the BERT reranker and the dense retrievers

ANCE and RepBERT. In this context, we studied the impact of vector representation (for vector-based PRF), PRF depth,

8
https://github.com/ielab/Neural-Relevance-Feedback-Public/blob/master/Vector_Based_PRF/README.md
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text handling techniques (for text-based PRF), and di�erent score estimation (vector fusion) methods (for vector-based

PRF) .

When analysing results for the vector-based PRF approaches, we found they di�ered depending on whether we

considered the task of retrieval or reranking.

In terms of which vector-based representation is most e�ective for retrieval, we empirically found that performing PRF

using ANCE as a representation (A+PRF-A) is better than when using RepBERT (R+PRF-R) across metrics and datasets,

with the exception of R@1000. Indeed, our results show that R+PRF-R tends to improve deep metrics, while A+PRF-A

tends to improve shallow metrics. When considering the reranking task, substantial improvements only occurred on a

few datasets and for a limited amount of metrics, and overall ANCE-based PRF performs better than RepBERT-based.

In terms of the impact of depth of PRF signal for vector-based PRF, we found that when retrieval is considered,

substantial improvements are recorded when 3 to 5 passages are given as feedback, while deeper feedback (10 passages)

hurts e�ectiveness most of the times. When reranking is considered, PRF depth is not a factor substantially in�uencing

e�ectiveness in a consistent manner across datasets and metrics.

In terms of score estimation methods (vector fusion) for the vector-based PRF, we found that, for the retrieval task,

RC𝛽 and RC𝛼,𝛽 achieve the best e�ectiveness across all datasets. Moreover, R+PRF-R often performs best when using

either approximately evenly distributed weights between query/feedback passages, or when the query retains most

of the weight. This is similar for A+PRF-A, although for this method there are cases where the best e�ectiveness is

achieved by giving a higher weight to feedback passages. When the task of reranking is considered, we found that RC𝛼

and RC𝛼,𝛽 record the most improvements. Substantial improvements, however, only occur on TREC DL 2019 and for

only MAP, RR, and nDCG@1.

To validate the generalisability of our proposed Vector-based PRF models, we considered �ve additional dense

retrievers (TCT-ColBERT V1, TCT-ColBERT V2 HN+, DistilBERT KD, DistilBERT Balanced, and SBERT) other than

ANCE and RepBERT. Experimental results showed that our vector-based PRF approaches consistently improved the

e�ectiveness over deep evaluation metrics.

The text-based PRF approaches were only applicable to the reranking task. In terms of depth of PRF, we found that,

in most cases, substantial improvements are achieved when using 3, 5, and 10 passages for PRF. Deeper PRF signals

(15 and 20 passages) were found to hurt e�ectiveness: this is likely because the addition of more feedback passages

substantially contributed to query drift. In terms of text handling methods, we found that CA performs best in most

cases, but only marginal improvements over the baselines are recorded across datasets and metrics.

We also experimented with applying the BERT reranker on top of Vector-based PRF models: this improves the

e�ectiveness for all evaluation metrics, but only signi�cantly for MAP. The signi�cant improvements on R@1000 are

purely produced by the Vector-based PRF models: the reranking step does not contribute to these improvements.

Vector-based and text-based PRF approaches could be compared only in the reranking task. In terms of e�ectiveness,

neither of these two types of approaches clearly and consistently outperformed the other across datasets and metrics.

However, they greatly di�ered in terms of e�ciency (query latency). When the vector-based PRF was used for retrieval,

latency was close to that of the bag-of-words PRF method BM25+RM3, and about double that of BM25. When used for

reranking, the latency of the vector-based PRF remained the same. However, to this latency one needs to add that of the

preceding part of the retrieval/ranking pipeline: in the case of our experiments that was the latency of BM25+BERT,

which was substantial. On the other hand, the latency of text-based PRF was substantially higher. To the latency of

the initial retrieval/ranking pipeline, in fact, the text-based PRF added the latency associated with the text handling

methods (e.g., Concatenate and Aggregate) – and this operation involved the execution of many more, costly BERT
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inferences, rendering the overall latency prohibitive for real-time search engines. The extensive experiments provided

in this paper serve as a guide for using state-of-the-art neural retrieval models into low latency environments.

This work opens up a number of avenues for future research. First, we note that the Vector-based PRF method, and

especially the Rocchio approach, has a number of limitations that future work could address. For example, Rocchio has

parameters (𝛼 , 𝛽) that need to be properly tuned to achieve the highest performance; we performed this tuning with

respect to a validation set. How these parameters could instead be set on a per query basis (e.g., using some form of

weight prediction) is still unclear.

Second, the use-case analysis in Section 6 revealed that the PRF methods are susceptible to the quality of the PRF

signal (i.e. the passages retrieved by the �rst stage method and then passed as input to PRF). Recent work has made

initial inroads to investigate this aspect. Speci�cally, Li et al. have studied the e�ect of signals of di�erent qualities on

the PRF process [26] – although they only explored a limited set of possible signals and PRF methods. Zhuang et al.

have devised e�ective methods to de-noise the feedback signal in the case of implicit feedback [78]. The extent to

which di�erent PRF methods di�er in terms of susceptibility to PRF signals of di�erent qualities is still however unclear,

especially beyond the speci�c methods that we examined in the use-case analysis and the signals and settings explored

in the aforementioned recent work.

Third, this paper only considered the passage retrieval and ranking tasks. PRF techniques have, however, long been

explored for document retrieval tasks and one wonders how the methods designed here for passages, and that exploit

pre-trained language models, generalise when considering documents. We note that adapting these speci�c passage

PRF methods to documents is not straightforward. Documents are sensibly longer in length than passages, and most

likely their text exceeds the maximum input length that pre-trained language models like BERT can consider. This is

certainly a problem for models like ANCE-PRF and our text-based PRF methods, where the text of the PRF signal needs

to be encoded. But, this is also a problem for our Vector-based PRF methods: while the text associated to the PRF signal

is not required by the PRF process itself, these documents need still to be encoded so that their dense vector can be

used (for the initial round of retrieval, and for the PRF). Tackling this limitation of pre-trained language models for

e�ective document retrieval is not new [41, 63, 66, 67]– progress so far in this space has not yet solved this problem

(especially if also e�ciency considerations are made) and PRF in this context is largely unexplored [58, 59, 61].

The implementations of our PRF methods are made publicly available at http://ielab.io/publications/li-tois-2022,

along with the full empirical results.
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