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Abstract

Background: Death certificates provide an invaluable source for mortality
statistics which can be used for surveillance and early warnings of increases in
disease activity and to support the development and monitoring of prevention or
response strategies. However, their value can be realised only if accurate,
quantitative data can be extracted from death certificates, an aim hampered by
both the volume and variable nature of certificates written in natural language.
This study aims to develop a set of machine learning and rule-based methods to
automatically classify death certificates according to four high impact diseases of
interest: diabetes, influenza, pneumonia and HIV.

Methods: Two classification methods are presented: i) a machine learning
approach, where detailed features (terms, term n-grams and SNOMED CT
concepts) are extracted from death certificates and used to train a set of
supervised machine learning models (Support Vector Machines); and ii) a set of
keyword-matching rules. These methods were used to identify the presence of
diabetes, influenza, pneumonia and HIV in a death certificate. An empirical
evaluation was conducted using 340,142 death certificates, divided between
training and test sets, covering deaths from 2000–2007 in New South Wales,
Australia. Precision and recall (positive predictive value and sensitivity) were used
as evaluation measures, with F-measure providing a single, overall measure of
effectiveness. A detailed error analysis was performed on classification errors.

Results: Classification of diabetes, influenza, pneumonia and HIV was highly
accurate (F-measure 0.96). More fine-grained ICD-10 classification effectiveness
was more variable but still high (F-measure 0.80). The error analysis revealed
that word variations as well as certain word combinations adversely affected
classification. In addition, anomalies in the ground truth likely led to an
underestimation of the effectiveness.

Conclusions: The high accuracy and low cost of the classification methods allow
for an effective means for automatic and real-time surveillance of diabetes,
influenza, pneumonia and HIV deaths. In addition, the methods are generally
applicable to other diseases of interest and to other sources of medical free-text
besides death certificates.
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1 Background
Public health surveillance is “ongoing systematic collection, analysis and interpre-

tation of health-related data with the a priori purpose of preventing or controlling

disease or injury and identifying unusual events of public health importance, fol-
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lowed by the dissemination and use of such information for public health action” [1].

Death is the most severe outcome of disease or injury and is thus of fundamental

significance to health surveillance. In Australia, registration of the fact and cause

of death is legislated. The cause of death is recorded by a medical practitioner on

the “Medical Certificate - Cause of death” [2]. The information contributes to vital

statistics reporting nationally and internationally [3].

The “Medical Certificate - Cause of Death” is a medical and legal document list-

ing, for a single person, the underlying and contributing causes leading to death.

In New South Wales (NSW) cancer [4] and HIV [5] deaths are subject to regular

formal reporting, for example NSW Health maintains a website which monitors the

health of people in NSW [6]. However, to realise their surveillance and statistical

value, cause of death information on death certificates needs to be classified and

categorised. This task is typically routinely performed using computer-aided classi-

fication by expert clinical coders employed by national statistical agencies. Coronal

inquiries for unnatural deaths can result in a cause of death being determined at

a later date than the registration of the fact of death. These factors lead to de-

lays of several years in the release of cause of death statistics. The coding process

is hampered by the fact that the cause of death information is written in natural

language and may be inconsistently structured and ambiguous. The International

Classification of Diseases - Revision 10 (ICD-10) is currently used for classifying

the underlying and contributing causes of death. The coding process is laborious

and costly. From a surveillance perspective, government health administrations re-

quire timely information on causes of death to provide rapid assessment of disease

prevention and health protection priorities. For example, organisations such as the

Centre for Disease Control [7] and NSW Health [8], use cause of death data to assess

the severity of pandemic and seasonal influenza in populations requires the timely

reporting of deaths from pneumonia and influenza.

More timely reporting of more diverse causes of death would facilitate important

feedback to health jurisdictions on the success of their disease and injury prevention

programs.

In this paper, we describe a system for the automatic classification of free-text

death certificates that could allow for real-time surveillance of death certificates.

Two alternative approaches were developed: 1) a machine learning approach, where

detailed features were extracted from the death certificate and were used to train a

set of supervised classifiers; and 2) a set of keyword-spotting rules. For the machine

learning approach, classification was done at two levels: disease name (‘nominal

classification’) and more fine-grained ICD-10 code (e.g., E10 vs E11: insulin vs. non-

insulin-dependent diabetes). (The rule-based approach could only be developed for

the nominal approach.) Both approaches were trialled to identify if death certificates

contained any cause-of-death (not necessarily being the underlying cause-of-death)

related to on the following diseases: pneumonia, influenza, diabetes and HIV.

A detailed empirical evaluation against seven years of manually coded death cer-

tificates showed that the proposed system was highly accurate at disease-of-interest

classification (F-measure 0.96). Fine-grained ICD-10 classification was more chal-

lenging for an automated system but was still effective (F-measure 0.80) — less

accurate results were often characterised by those ICD-10 diagnoses with little or
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no training data available. Furthermore, a detailed, manual analysis of the errors

was conducted to gain a greater understanding of the data, classification task and

areas for future work. This analysis revealed a number of areas of improvement,

including handling word variants (e.g., “pneumonitis” or “pneumonic” as variants

for “pneumonia”) in the death certificates, word-phrase combinations and class con-

fusions (e.g., E10 vs. E11). In addition, this analysis highlighted anomalies in the

ground truth (for example, coroner’s cases where all cause-of-death information was

not recorded on the death certificate) that would lead to an underestimation of the

effectiveness of the methods.

The methods proposed in the study provide an efficient and effective real-time

surveillance method for a set of key diseases of interest. These methods are generally

applicable to the surveillance of other diseases and may also be applicable to other

data sources besides death certificates.

Related work

Syndromic surveillance involving rapid capture, analysis and reporting of adminis-

trative data for the purpose of public health surveillance is an important part of an

effective health system. Its prominence has increased in recent years with the in-

crease in the volume and accessibility of electronic data and automated surveillance

methods are increasingly researched. This has led to the development of open source

systems specifically designed for outbreak and disease surveillance [9]. Naturally,

much of this previous research has focused on surveillance of hospital emergency

department data [10] or telephone triage data [11] as these settings are ideal for

capturing data at the early stages of acute illness and may permit a rapid public

health response to outbreaks. Influenza, a fast moving epidemic disease that annu-

ally causes high morbidity and mortality in populations and which has pandemic

potential, is a frequent focus of syndromic surveillance [12, 13].

The previous work on disease surveillance on hospital data often made use of

coded data (e.g., ICD-10 codes) [14, 9, 15] to identify particular diseases, thus the

focus was not on extracting the diseases but instead on monitoring and identifying

outbreaks. In contrast, the focus of this study is how to identify the disease from

non-coded, free-text data — a necessary step prior to the monitoring stage. Some

previous research has specifically dealt with surveillance from free-text data, both

from a machine learning [10] and rule-based approach [8].

While death is the ultimate outcome of disease and its occurrence lowers urgency

of the case to be investigated, it is nevertheless still a high priority for syndromic

surveillance. Fatal diseases focus prevention efforts and public attention far more

than milder illness. Death certificates provide an ideal administrative data source for

syndromic surveillance. They have a specific format and language that differs from,

for example, emergency department notes and therefore may require a different

set of methods for automatic classification. Some initial work has been done on

automatic classification of death certificates, from both a rule-based approach for

pneumonia and influenza [8, 16] and a machine learning approach for cancer [17].

However, these studies have been small in scale and focus on one main disease and

one main method (either rule-based or machine learning). The contribution of this

paper is



Koopman et al. Page 4 of 12

i) methods for automatic classification of a number of different diseases (diabetes,

influenza, pneumonia and HIV); ii) comparison of both rule-based and machine

learning methods; iii) a large-scale empirical evaluation of the proposed methods.

In addition, classification methods are developed and evaluated for both course-

grained disease of interest and fine-grained ICD-10 level.

2 Methods
Two alternative classification methods were investigated: a supervised machine

learning approach and a rule-based approach; each are described and evaluated

independently.

2.1 Machine learning methods

We adopted a supervised machine learning method. First, detailed features were

extracted from the death certificates, then ground truth labels (computer-aided

human ICD-10 coding from official statistics) were assigned to each certificate and

finally the labelled features were used to train a predictive model. The model was

then used to classify uncoded death certificates, based on their extracted features.

Feature extraction methods

First, we applied a natural language processing pipeline that extracted, from a death

certificate, an array of different features that could be used to train a classification

model. A number of different feature types were used; these fell into two different

categories: i) basic term-based features taken directly from the text of the death

certificate; and ii) concept-based features, derived from the original terms, where

concepts belong to standard medical terminologies (e.g., the SNOMED CT ontol-

ogy). The process of extracting concepts from free-text was performed by Medtex, a

clinical natural language processing system [18, 19]. Table 1 describes the different

types of features extracted, belonging to these two categories. For each feature type,

a description and an example of the features that were consequently derived given

the text fragment is provided. The feature types listed here were chosen because

they were shown to be successful in a previous study on classification of cancers

from death certificates [17].

Once all features were extracted, death certificates were transformed from original

terms to vectors of features (one vector per certificate); for example, each word (To-

kenStem) or SNOMED CT concept represented a single feature dimension in the

vector, with features grouped into high level feature types (TokenStem or SCTCon-

ceptId). The vector comprised binary values indicating if that feature was present

in the particular death certificate. Once each death certificate was represented as

a feature vector, this feature vector was used as the input to the machine learning

classifier.

Classifier model training & testing

Using the feature vectors described in the previous section, a single classifier model

was trained for each of the four diseases of interest (pneumonia, influenza, diabetes

and HIV) and a single classifier model for each of ICD-10 codes representing these

diseases (e.g., E10, E11, E13 and E14 represented diabetes). Each model performed
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a binary classification on their respective class; for example, a “is diabetes” for the

diabetes classifier and a “is E10” for the E10 classifier. The models were trained by

dividing the death certificates according to a stratified 80/20 training/testing split

(more details on experimental setup in Section 2.3). In total, 14 separate models

were trained.

For the implementation of the classifiers we use Support Vector Machines

(SVMs).1 SVMs were chosen as they were the best performing classification model

in a previous death certificate classification task [17]. The Weka toolkit [20] was

used for the SVM implementation. The parameters for all classifiers were set to the

defaults described in Witten et al. [20].

2.2 Rule-based methods

The rule-based approach involved the development of a set of keywords, provided in

consultation with domain experts, for each disease of interest that characterise that

disease.2 The presence of these keywords for each disease in the death certificate

text would indicate whether that certificate is a positive or negative match for that

particular disease.

We adapted the rule-based method suggested by Muscatello et al [8]. in which

keywords were defined for three generic categories of influenza, pneumonia, and

other. In our study, we further expanded the list of diseases used in [8] to include

diabetes and HIV. The rule-based system was used to classify a set of training

certificates and errors from this evaluation were used to further refine the keyword

list. (Keywords were considered case insensitive.) In addition, a set of excluded

keywords was also added. The final list of included and excluded keywords in the

rule-based system is shown in Table 2.

We note that these rules are currently manually constructed and therefore they

have two main restrictions: 1) they are limited to the expert’s knowledge of the

terminology used to describe a particular disease, and 2) they are not automatically

updated and no weighting is assigned to the keywords.

2.3 Data and experimental setup

In this section, we detail the data used in our empirical evaluation, including de-

velopment of the ground truth and the method for compiling separate training and

test sets.

Death certificate collection and ground truth

The data consisted of de-identified death certificates covering the period 2000–2007

(340,142 certificates in total). Each certificate came with the following information:

• Free-text cause of death description, both immediate and conditions lead-

ing to death, was used as the input to our machine learning and rule-based

classification methods.

• A set of ICD-10 codes representing the cause of death as determined by the

Australian Bureau of Statistics. These codes represent ground truth against

which our methods were evaluated. All ICD-10 codes were truncated at the

three character level; for example, the code E11.1 (Non-insulin-dependent di-

abetes mellitus: With ketoacidosis) was converted to simply E11 (Non-insulin-

dependent diabetes mellitus). Multiple ICD-10 codes could be assigned to a
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single certificate, however, a single code represents the underlying cause of

death (all other codes refer to alternative causes of death). The four diseases

of interest — pneumonia, diabetes, influenza and HIV — were identified based

on a set of ICD-10 codes covering that disease. Details of this and the number

of certificates associated with each ICD-10 codes is shown in Table 3.

• A flag representing whether the death involved a coronial inquiry. Coroner’s

cases are handled differently by the clinical coders, who often have access

to additional information about the death that is not stated in the death

certificate. As such, we wished to identify these cases to understand the impact

on system performance. The dataset contained 40,512 coroner cases (12% of

the total collection).

Pneumonia, diabetes, influenza and HIV were chosen because they are of im-

portance to health agencies and because they cover both high prevalence diseases

(Diabetes and Pneumonia) and very low prevalence diseases (Influenza and HIV).

This was done to ensure that the proposed methods were evaluated on both high

and low prevalence diseases.

Training & test split and evaluation measures

The dataset was divided into two parts: a training and test set, covering 80%

(270,742 certificates) and 20% (68,470 certificates) of data respectively. This was

done according to a random sampling stratified by underlying cause of death code.

The training set was used to both train the machine learning classifiers and to de-

velop the keywords for the rule-based approach. The test set was kept as unseen data

purely for evaluation purposes. Some ICD-10 codes did not contain sufficient cases

to form a 80/20 split and, therefore, classifiers were not built for these certificates;

these are marked with a ‘×’ in Table 3.

Two evaluation measures are considered: precision and recall. Precision (also

called positive predictive value) is the fraction of positively classified certificates

that belong to the correct class3, while recall (also called sensitivity) is the fraction

of actual certificates of that class that are positively classified.4 For disease surveil-

lance, both precision and recall are important: a high precision indicates that the

system assigns the right disease to a certificate, while a high recall indicates the

system does not miss certificates that contain that disease (particularly important

for rarer diseases). To provide a single, overall evaluation measure, precision and

recall are combined into a third evaluation measure, F-measure.5

Data did not contain variables with identifying information such as names, dates

of birth or addresses and ethical approval was not required.

3 Results and discussion
Table 4 presents the detailed classification results for diseases of interest, with rule-

based results shown in (a) and machine learning results shown in (b). In addition,

a confusion matrix, which provides a breakdown of true positives, false positives,

true negatives and false negatives, is shown for each disease. A graphical summary

of the results is shown in the plot of Figure 1. Both methods demonstrated good

performance across the different diseases. The two methods had comparable perfor-

mance, with the only statistically significant difference between the two being on
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diabetes, where the machine learning method was superior. For influenza, the rule-

based approach was more effective, likely because it is the smallest class in terms

of the amount of training and testing data which adversely influences the effective-

ness of machine learning methods. For HIV, the machine learning method is more

effective, likely because the machine learning method effectively accounted for the

many different variants of describing HIV (AIDS, HIV, Human Immunodeficiency

Virus). (However, a larger sample size would be required to determine statistical

significance for influenza and HIV.) Overall, both methods have higher recall than

precision, showing that false positive errors are more common than false negative

errors. The fact that recall is higher than precision may be more reflective of disease

prevalence. The prevalence of diabetes and pneumonia are high but the prevalence

of HIV and influenza are very low; this accentuates the effect of false positives on

recall. It is important to note that the methods proposed here are effectives across

a range of both high and low prevalence diseases.

Table 5 presents the results for ICD-10 classification (machine learning only).

Compared with the disease of interest results, the ICD-10 classification demon-

strated more variable results: most models were highly effective (E10, E11, E14,

J11, J12 and J18), while some others were less effective (E13, J13 and J15). Poor

performance was generally characterised by rarer ICD-10 codes: those with only a

small number of cases (shown as the sum of the bottom row of the confusion matrix

for each ICD-10 code). This is also demonstrated by the difference between the

macro-average (the mean of the individual performances for each classifier) and the

micro-average (the sum of the individual true positives, false positives, and false

negatives, divided by the total number of cases); the lower performance of rarer

ICD-10 classes reduces the macro-average but only contributes a small number of

errors toward the overall micro-average.

While both methods — rule and machine learning — had comparable overall ef-

fectiveness, they have different advantages and disadvantages. The rules have to be

manually defined so adding additional diseases requires manual intervention. The

machine learning classifiers do not require manual intervention; however, they do

require that suitable labelled training data is available (which may require machine

intervention). The rules are computationally very simple: deployed easily and use-

ing very little computational resources. The machine learning methods require a

suitable pipeline to extract features from the death certificates and then train an

appropriate support vector machine, some of which can be computationally expen-

sive for large collections. Thus the two methods could be seen as complimentary

given the individual application to which they may be applied.

Comparing the results here with those of previous studies outline in the Related

Work, the rule-based results for Influenza and Pneumonia were inline with that

of Muscatello et al [8]. (HIV and Diabetes were not considered in that previous

study.) For the machine learning results, comparison is made against the classifica-

tion methods of Butt et al [17], who applied similar techniques to identifying the

presence of cancer from death certificates. F-measure results were 0.98 — the same

as the machine learning methods reported in this study. It is worth noting though

that the tasks differ somewhat between the two studies: i) cancer is a broad range

of different conditions, whereas influenza, diabetes, pneumonia and HIV are more
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specific ii) the task was predict cancer as the underlying cause-of-death, whereas

as the task here was to predict influenza, diabetes, pneumonia and HIV as any

contributing cause-of-death.

3.1 Error analysis

While the disease of interest classification was highly effective, the ICD-10 classi-

fication demonstrated some variable results. To further understand the issues and

factors influencing ICD-10 classification a detailed manual review of classification

errors was undertaken. A subset of 495 incorrectly classified death certificates were

reviewed by two authors with clinical coding experience (DT & MK). The rea-

sons underlying the errors were identified and errors were assigned to one or more

categories (the breakdown of which is shown in Table 6):

Word variations: Lexical variants of the same disease. For example, “pneumonitis”

or “pneumonic” as variants for “pneumonia”; or “type II”or “type two” to

express type 2 diabetes. Also, included are some misspellings, e.g.,“aspiranion”

and “phenomia”.

Word combinations: Words in combination create a phrase with an alternative

meaning than the individual words in isolation and, therefore, an alterna-

tive cause-of-death. For example, the word combination “diabetes insipidis”,

which, although containing the word “diabetes” is, in fact, a separate condi-

tion and should be assigned E23 (Hypofunction and other disorders of pitu-

itary gland) not E14 (Diabetes mellitus). Word combinations were a feature

extracted from the death certificate (see the TokenStem n-gram feature from

Table 1); however, there was likely insufficient samples of these cases for train-

ing a model that was sensitive to such cases.

Secondary causes: A number of false negatives were observed where the disease of

interest was found in Section II of the death certificate. Section II is defined as

“Other significant conditions contributing to the death, but not related to the

disease condition causing it”, while Section I is “Disease or condition directly

leading to death”. For these cases, the presence of the entries in Section I

would have likely led the classifier to assign a negative label to the certificate.

Class confusion: A number of errors resulted from confusion between the spe-

cific codes for a particular disease; for example, confusion between Insulin-

dependent diabetes mellitus (E10), Non-insulin-dependent diabetes mellitus

(E11) and Unspecified diabetes mellitus (E14); similarly, between Bacterial

pneumonia (J15) and Pneumonia, organism unspecified (J18). The source

of class confusion is primarily in that the two codes (diseases) are difficult

to distinguish from each other (for an automated classifier). For example, the

feature vectors for three death certificates containing “Type I diabetes” (E10),

“Type II diabetes” (E11) and “diabetes” (E14) are very similar to each other.

Thus, it is difficult for the machine learning method to differentiate between

them. In addition, there are multiple ways to express the same disease; e.g., for

Diabetes, “insulin-dependent” or “Type I” (E10) and for Pneumonia, “bacte-

rial” or “streptococcal” (J15). This means that the feature vectors belonging

to a single class (e.g., all the J15s) are quite different from each other; again

making it different for the machine learning method to accurately differentiate

from other classes.
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Ground truth class confusion: There were instances where the ground truth label did

not appear accurate (according to the ICD-10 cause of death coding guide-

lines [21]). For example, a death certificate containing “pneumonia, aspira-

tion” coded with J18 rather than J69 (Pneumonitis due to solids and liq-

uids); or “diabetes (type II)” coded with E14 (unspecified) rather than E11

(non-insulin-dependent).

Ground truth error: Prediction appears correct based on the available text, however

the ground truth contained a number of additional codes, leading to the as-

sumption that further information was available to the clinical coders which

was not evident in the text. This is often the case for coronial inquiries, where

the clinical coder has access to additional cause of death information from

the coronial information system. For example, a death certificate containing

only the text Multiple Injuries but coded with J18 (Pneumonia, organism

unspecified).

Ground truth empty: For a small number of death certificates, no ground truth codes

were available.

Table 6 shows that 42% of errors were from categories that were related to ground

truth issues; the most significant being the Ground truth error category predomi-

nantly the result of death certificates involving coronial inquiries where additional

information was available to the clinical coder. These certificates could be excluded

— either not used in training the model or excluded from the empirical evalua-

tion — however, it is valuable to understand the effect that such certificates had on

classification effectiveness. Overall, the issues related to ground truth would suggest

that the effectiveness of the classification methods was underestimated and that the

actual classification effectiveness for ICD-10 would be higher.

Limitations and future work

A limitation of the proposed methods is that adding new diseases requires the

development of new models and rules. For the machine learning methods, this is

done by simply training a new model, provided the labelled ground truth data is

available. Developing new rules is more laborious as it requires manually analysing

certificates to identifying relevant keywords for the new rules.

Changes in different diseases may also affect the performance of the classifiers

over time. For example, in this study, death certificates were within the 2000–2007

timeframe and, therefore, did not contain deaths from the H1N1 pandemic of 2009.

Thus, the methods would likely not identify a H1N1 death as being a Influenza

related. Retraining or incrementally updating the classifiers would be required to

keep them up-to-date with changes in diseases.

In this study, only the textual cause-of-death entry was available to us and used

to classify death certificates. However, a death certificate does contain addition

information, including place of death (home, hospital, etc.), age, gender and whether

the cause was a coronial case. This information may be valuable to include as

additional features for the classification methods. Certainly, the previous section

highlighted issues related to coronial cases that could likely be alleviated if this

information was included as additional features.
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A number of areas of future work arise from the error analysis. Given that the

vocabulary of death certificates is somewhat constrained, an effective term normal-

isation (e.g., folding synonyms to a single root term) method could be developed

to deal with issues around word variations. This method may also help to alleviate

some of the issues around word combinations: normalising terms would also result

in normalisations of phrases, thus providing more training samples for such phrases.

More errors were observed when diseases of interest were mentioned in Section II of

the death certificate6; thus, incorporating section information into the classification

system may help to alleviate such errors. Some of the issues around class confusion

may be addressed by incorporating additional higher-level features (e.g., virus or

bacteria type features when encountering pneumonia) with each disease. Finally,

misclassification of coroner’s cases highlights a need for such cases to be handled

separately by the classification system.

4 Conclusions
Our study proposed and evaluated a means to automatically identify and charac-

terise pneumonia, diabetes, influenza and HIV from large collections of free-text

death certificates. This could be be implemented in the context of real-time moni-

toring and surveillance of mortality due to these diseases of interest. Two alternative

approaches were developed: 1) a machine learning approach, where discriminating

features (both term and concept-based) were extracted from the death certificate

and were used to train a set of supervised classifiers, both for course-grained dis-

ease of interest and fine-grained ICD-10 causes of death; and 2) a set of keyword-

matching rules at disease of interest level.

Empirically, disease of interest classification was highly accurate with 0.96 F-

measure, while ICD-10 classification was variable but still effective with 0.80 macro-

average F-measure. A detailed error analysis revealed a number of issues related to

incorrect or differing ground truth — the results being that the actual effectiveness

of the ICD-10 classification methods was higher than estimated. In addition, the

error analysis revealed a number of areas of future work in terms of normalisation,

section handling and additional higher-level features (e.g., virus vs. bacteria).

The methods and findings of this study are generally applicable to other diseases

besides pneumonia, diabetes, influenza and HIV investigated here. In addition, the

methods and findings are also applicable to other sources of medical free-text besides

death certificates.

Notes

1A Support Vector Machine is a discriminative classifier formally defined by

a separating hyperplane. In other words, given labeled training data (supervised

learning), the algorithm outputs an optimal hyperplane which categorizes new ex-

amples.

2The rule-based approach was applied to only the disease of interest and not for

individual ICD-10 codes.
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3Precision = True Positives / (True Positives + False Positives).

4Recall = True Positives / (True Positives + False Negatives).

5F-measure = 2 * (Precision * Recall) / (Precision + Recall).

6Section II is defined as “Other significant conditions contributing to the death,

but not related to the disease condition causing it”.
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Appendix A: Word Variants
Table 7 provides a list of common word variants identified during the manual analysis of classification errors.
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Figure 1 Classification performance results for diseases of interest: Influenza, Diabetes,
Pneumonia and HIV. Error bars show 0.95 confidence intervals.
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Table 1 Types of features — both term and concept-based — extracted from death certificates.
(Stemming is a process of removing and replacing word suffixes to arrive at a common root form of
the word.)

Feature type Description Example Certificate
Extract

Resulting Feature Val-
ues

T
er

m TokenStem A token stem, i.e., the
stemmed version of a
word.

Acute chronic
renal failure

Acut, chronic, renal,
failur.

TokenStem
n-gram

The n-gram formed by n
adjacent token stems.

chronic renal
failure

chronic renal, renal
failur.

C
o

n
ce

p
t

SCTConceptId SNOMED CT concept
identifier (as extracted
by the Medtex system)

chronic renal
failure

90688005.
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Table 2 List of keywords used to identify cause of death as diabetes and HIV.

Disease Included Keywords Excluded Keywords

Pneumonia Pneumonia, Pnuemonia, Pnemonia,
Pneomonia, Pneamonia, Penumonia,
Pheumonia

Aapiration, Aspirare, Aspiranion

Influenza Influenza, Influenza, H1N1,
Swine Flu, Swineflu, Swine Influ,
SwineInflu

Haemophilus Influenzae,
Haemophilus

Diabetes Diabetes, NIDDM, IDDM, Diabetes
type 1, Diabetes Type I, Diabetes
Type 2, Diabetes Type II, Type
I diabetes, Type II diabetes,
Type 1 diabetes, Type 2 diabetes,
Type 2 diabetic mellitus, Type
II diabetic mellitus, Diabetes
mellitus Type 2, Diabetes
mellitus Type II, Diabetic

HIV HIV, AIDS, human immunodeficiency
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Table 3 Breakdown of the dataset according to disease of interest and ICD-10 code and based on
underlying and alternative cause of death numbers. The diseases of interest are comprised of the sum
of the individual ICD-10 codes they represent. Individual classifiers were not built for ICD-10 classes
marked with a ‘×’ due to insufficient number of cases for these classes.

Disease / ICD-10 #Underlying COD #Alternative COD #Total

Diabetes 7144 22647 29791
E10 830 1933 2763
E11 2449 10307 12756
E13 2 19 21
E14 3862 10387 14249
O24× 1 1 2

Influenza 148 44 192
J09× 0 0 0
J10× 10 3 13
J11 138 41 179

Pneumonia 7259 36688 43947
J12 33 38 71
J13 59 39 98
J14× 5 11 16
J15 241 405 646
J16× 3 6 9
J17× 0 0 0
J18 6918 36189 43107

HIV 371 406 777
B20 139 17 156
B21 59 6 65
B22 80 9 89
B23 54 21 75
B24 39 398 437
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Table 4 Classification performance results for diseases of interest: Influenza, Diabetes, Pneumonia
and HIV. Statistically significant differences between rules and machine learning as measured with a
two-tailed z-test are marked with *, representing p < 0.05.

(a) Rule-based

Disease Precision Recall F-measure Confusion Matrix
Classifier Ground truth
- +

Influenza 0.94 0.89 0.92 68430 2 -
4 34 + Influenza

Pneumonia 0.98 0.97 0.97 59351 215 -
274 8630 + Pneumonia

Diabetes 0.98 0.96 0.97 62,519 100 -
212 5639 + Diabetes

HIV 0.93 0.85 0.89 68,373 6 -
14 77 + HIV

Macro-average[a] 0.94 0.96 0.95
Micro-average[b] 0.98 0.98 0.98

[a]Macro-average is the mean of the precision, recall, and f-measure values from the four
classes above.
[b]Micro-average aggregates the values from the confusion matrix for all the classes and
calculates the measures over all the data.

(b) Machine learning

Disease Precision Recall F-measure Confusion Matrix
Classifier Ground truth
- +

Influenza 0.84 0.95 0.89 68425 7 -
2 36 + Influenza

Pneumonia 0.98 0.97 0.97 59364 202 -
279 8625 + Pneumonia

Diabetes 0.98 0.99* 0.99* 62522 97 -
72 5779 + Diabetes

HIV 0.91 0.96 0.93 68370 9 -
4 87 + HIV

Macro-average 0.93 0.97 0.94
Micro-average 0.98 0.98 0.98
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Table 5 Classification performance results for individual ICD10 classes.

Disease Precision Recall F-measure Confusion Matrix
Classifier Ground truth
- +

D
ia

b
et

es E10 0.76 0.97 0.86 67774 162 -
14 520 + E10

E11 0.97 0.97 0.97 65852 89 -
78 2451 + E11

E13 0.40 0.50 0.44 68463 3 -
2 2 + E13

E14 0.96 0.97 0.96 65521 116 -
97 2736 + E14

F
lu J11 0.88 0.86 0.87 68431 4 -

5 30 + J11

P
n

u
em

o
n

ia J12 1.00 0.93 0.97 68455 0 -
1 14 + J12

J13 0.79 0.55 0.65 68447 3 -
9 11 + J13

J15 0.92 0.35 0.51 68331 4 -
88 47 + J15

J18 0.97 0.97 0.97 59480 244 -
286 8460 + J18

Macro-average 0.85 0.78 0.80
Micro-average 0.96 0.96 0.96
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Table 6 Breakdown of classification errors according to different error categories. Categories are
divided into actual classification errors and other issues related to the use of ICD-10 codes as the
ground truth label.

Category Total #Errors % of total records #Coroner cases

Classification Errors: 405 58.0 76
Word variations 75 11.5 12
Word combinations 98 13.0 15
Secondary causes 150 22.4 43
Class confusion 82 11.1 6

Ground truth issues: 290 42.0 130
Ground truth class confusion 98 12.7 10
Ground truth error 167 25.5 113
Ground truth empty 25 3.8 7
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Table 7 Common word variants identified during the manual analysis of classification errors.

Pneumonia Influenza Diabetes HIV

Bronchopneumonia influenzal Non insulin Acquired immunodeficiency syndrome
Pneumonitis Type A Non-insulin Immune deficiency syndrome
Pneumonic Type B diabetic Human immunosuppressive virus
Broncho-pneumonia parainfluenza DM Human immuno deficiency virus
Bronchopneumonitis Haemophilus IDD
Pneumocystis Haemophyllis IDDI

influenzae
Influenza A
Influenza B
Parainfluenza III
High influenza
Influenza-like
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