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ABSTRACT
Clinical Trials are a critical step for medical advancement; key to
success is recruiting eligible patients to a trial. Retrieval methods
are used to identify relevant trials given a single patient/query. Af-
ter careful consideration of the clinical setting, this paper takes a
different approach: cohort-based trial retrieval. We consider ranking
trials that maximise recruitment opportunities across the whole
patient cohort, instead of a single patient. This resolves into op-
timising a ranking for the whole query set formed by the patient
cohort, rather than treating each query independently — and thus
considering an evaluation measure based on cohort coverage. We
study the adaptation of rank fusion methods and diversity rerank-
ing to this problem. Empirically, we show the surprising impact of
initial ranking effectiveness (underlying initial retrieval) on cohort
coverage when adapting rank fusion methods. We further high-
light that devising cohort-aware methods would have a far greater
impact on patient recruitment.
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1 INTRODUCTION
Clinical trials are experiments done in the development of new
treatments, drugs or devices. They are a critical step for medical
advancement and are essential before new advances can be used in
practice. However, recruiting sufficient eligible patients to a trial
can be a major obstacle [15]. It can lead to trials being delayed or
even cancelled. Even if successful, recruitment is costly and time
consuming.

Large collections of clinical trials are published online (Clinical-
Trials.gov contained 330,113 trials in 2020). Treated as a document
collection, these can be searched using a description of a patient
(for example, a patient’s electronic patient records). In traditional
clinical trial matching, there is a cohort (i.e., query set) of patients;
each query representing the patient is issued to the IR system and
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a ranking of trials is retrieved. There are explicit test collections for
this task [12], including the TREC PrecisionMedicine Track [16, 17].
Evaluation is done in the traditional IR manner: evaluate each sin-
gle query independently according to some evaluation measure;
then average across all the queries to get an overall measure of
effectiveness. While the workflow is valid it does not capture the
actual clinical setting.

In the clinical setting, the patients are not independent and hence
queries should also not be treated so. This is because many patients
are likely to show similar clinical profiles and diagnosis, even more
so when confined to a specialist practice. Across the rankings of
clinical trials for the whole patient cohort (i.e., query set), there
may be common trials, retrieved for a number of queries and thus
relevant to a number of patients. As we will show, there is a real
advantage in retrieving trials for which many patients (i.e., queries)
are relevant. Thus this paper investigates cohort-based clinical
trial retrieval: devising a ranking of trials that covers as much of
the patient cohort as possible.

We formalise this problem and identify suitable evaluation mea-
sures and settings which model the real-world clinical situation
of matching patients to eligible trials. We adapt a number of rank
fusion techniques to combine rankings from single-queries into a
final cohort-based ranking. Empirical evaluation shows that high
quality single-query rankings do not necessarily correlate with the
final cohort-based ranking. We show the limitations of optimising
retrieval for a single-query. Based on this we utilise a diversity-
based reranking method that accounts for patient coverage; this
does improve cohort-based ranking. Establishing a strong baseline
for a greedy selection of final cohort ranking, we show the potential
for new models that aim to optimise the final cohort ranking.

2 THE USE CASE FOR COHORT-BASED TRIAL
RETRIEVAL

Matching patients to clinical trials happens in the four different
settings outlined in Table 1. Automated methods for both pT and
tP have been considered; in particular, by researchers in the Text
Retrieval Conferences (TREC). However, this was always done for
either a single patient (pT) or single trials (tP). Matching trials to
cohorts of patients has not been tackled to our knowledge.

In a real-world setting, given the above situations, people are
limited in their capacity to review trials or patients. Note that even
with a highly effective information retrieval system, there is always
a manual review step to determine eligibility. (This could involve,
for example, further medical tests for a particular patient so beyond
the scope of an automated matching system.) The limited capacity
of manual reviews imposes two types of constraint:

Fixed Number of Patients: First, where someone is responsible
for a cohort 𝑃 patients (e.g., a hospital or individual clinician) and
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Id Input Output User/Example scenario

pT Single patient, 𝑝 Eligible trials, 𝑇 . Individual clinician trying to find a trial for their patient.
tP Single trial, 𝑡 Eligible patients, 𝑃 . Researchers or pharmaceutical companies conducting a particular clinical

trial for which they want to recruit patients.
PT Cohort of patients, 𝑃 Eligible trials, 𝑇 . Clinician or organisation (e.g., hospital) responsible for a number of patients

they want to enrol in to clinical trials.
TP Set of trials, 𝑇 Cohort of eligible patients, 𝑃 . Either similar to tP where researchers or pharmaceutical company are trying

to recruit to multiple trials; or where a health provider (clinician or hospital)
is supporting multiple trials.

Table 1: Different settings of the patient-trial matching problem. 𝑝 ∈ 𝑃 is a patient in a set of patients; 𝑡 ∈ 𝑇 is a trial in a set of
trials.

wants to enrol them into trials. They would like to enrol as many
of the 𝑃 patients as possible. It is particularly beneficial to enrol
multiple patients to a trial, thus reducing the overall number of
trials one has to deal with. This is because each trial incurs a certain
fixed cost, both from an administrative and cognitive overhead
perspective.

Fixed Number of Trials: The second situation is for people strictly
limited on the number of trials they can review; for example, a busy
clinician. Here they are managing a fixed set of 𝑇 trials — again
resource limitations dictate the amount of trials (size of 𝑇 ).

This paper considers the case of matching a cohort of patients to
a set of trials, rather than individual patients. There are a number
of advantages of a cohort-based approach:

(1) Less trials overall are needed to cover the whole patient
cohort.

(2) From a practical perspective, this means a clinician (e.g., doc-
tor) has to review less trials. In many cases, a busy clinician
will have a strict limit on the number of trials they will re-
view, thus retrieving trials that cover more patients means
more of the overall patient cohort are covered, which may
result in better health outcomes for more patients.

(3) Recruitment effort reduces with less trials — the overhead
of recruiting 10 patients to 1 trial is far less than recruiting
10 patients to 10 different trials.

(4) By retrieving trials that increase coverage of the patient
cohort, more patients have access to new and emergency
treatments — in the cancer space, for example, this can be
life saving.

As practical illustration of the benefit, consider the small sample
case in Figure 1. The left ranking is not optimised for patient cover-
age: if someone was reviewing trials in order, top to bottom, they
would need to review all five trials to cover each of the five patients.
In contrast, the right ranking is optimised for patient coverage:
someone reviewing trials would only need consider the top two
trials to ensure complete coverage.

3 RELATEDWORK
There have been a number of initiatives to foster research in match-
ing patients to trials. While research has been hampered by a lack of
publicly available patient records (understandable given the privacy

constraints of releasing such data), there have been four key test col-
lections available for empirical evaluation: TRECMedTrack [20, 21],
TREC Precision Medicine (PM) Tracks, MIMIC III [8] and a custom
collection we released [12].

TREC MedTrack ran in 2011 and 2012 and represented the single
trial, eligible patients setting (tP of Table 1). The document collec-
tion was a set of de-identified patient records, including discharge
summaries, surgery notes and laboratory reports. The queries, while
not explicitly a clinical trial, were a general description of the eligi-
bility criteria; for example, “Adult patients who are admitted with
an asthma exacerbation” (TREC 2011 topic# 15).

Effective methods in TREC MedTrack were mostly well known
statistical, IR approaches from the time with a number of domain-
specific enhancements added [3]. These included:

• Normalising vocabulary to the particular clinical domain.
• Query expansion; either via controlled medical vocabulary
such as Unified Medical Language System Metathesaurus,
or via external corpora [24].

• Recognition and handling of negation in text [11] (e.g., “pa-
tient had no fever”), which is particularly prevalent in clinical
language.

• More recently, learning-to-rank methods have showed to be
very effective on this task [7].

Post TREC MedTrack error analysis [5] revealed that vocabulary
mismatch was not the main cause of errors. Instead, the main
challenge was effectively ranking relevant documents above non-
relevant documents, where both contained the query terms.

The single patient, eligible trials setting (pT of Table 1), was
the focus of the TREC Precision Medicine (PM) Tracks [16–18].
The document collection was a snapshot of trials from Clinical-
Trials.gov. The queries were a description of a particular patient,
including symptoms, diagnoses, demographics and genetics. These
were terse and thus not directly equivalent to the type of notes
found in an Electronic Health Record system, but at least provide a
surrogate patient description that can be used for experimentation
with different retrieval systems.

The most effective methods in TREC PM were learning-to-rank
based. These had specific features for genes and diseases and often
did significant query and document preprocessing to extract this
information [6]. Effective query handling (e.g., preprocessing or
handling) proved important [4, 22].
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Figure 1: Sample rankings for two different approaches: cohort-aware (right) and individual patient ranking (left). The X
indicates that the patient is relevant to the corresponding trial. For cohort-optimised ranking, full coverage of the five patients
is achieved by reviewing only the top two trials. In contrast, for individual ranking, full coverage is only achieved by having to
review five trials.

A key observation with all the above methods is that they focus
on matching a single patient to trials (e.g., TREC PM); or matching
a single trial to patients (TREC MedTrack); they do not consider
the case of cohort retrieval — matching a cohort of patients to a
set of trials. In the previous section, we have outlined the case for
cohort retrieval. To our knowledge, there has been no investigation
into how cohort retrieval might be applied to or impact search for
clinical trials — thus cohort retrieval is the focus of this study.

4 FORMALISING THE PATIENT COHORT
COVERAGE PROBLEM

Figure 2 presents graphically how the proposed cohort-based re-
trieval problem compares with the traditional, single-query ap-
proach. We formally describe the various aspects below.

Let 𝑄 represent the set of 𝑛 patients/queries 𝑞 ∈ 𝑄 for which
we would like to find eligible trials. If each query is answered
independently, as in traditional IR evaluation settings, then a result
set𝑅𝑄 is formed by considering the individual ranked lists 𝑟1, . . . , 𝑟𝑛
for each of the single queries 𝑞 (thus 𝑅𝑄 = {𝑟1, . . . , 𝑟𝑛}). Each result
list would contain clinical trials 𝑡 ∈ 𝑇 for a large collection of
clinical trials (e.g., from ClinicalTrials.gov).

Now let 𝑇𝑄 instead represent the final cohort-based ranking of
trials 𝑡 ∈ 𝑇 for the set of patients 𝑄 . Unlike 𝑅𝑄 , that contains a
ranked list for each query (and thus 𝑛 rankings in total), 𝑇𝑄 is a
unique ranking that is meant to consider all patients (queries) in
the cohort. Ideally, 𝑇𝑄 should provide a ranking of relevant trials
that maximises the number of patients that can be recruited to the
trials.

In the clinical setting, a clinician needs to manually review the re-
trieved trials. Busy clinicians will only have the capacity to process

a limited numbers of trials and they may thus impose the constraint
of viewing no more than 𝑟 trials such that |𝑇𝑄 | < 𝑟 .

Note that it is important that a patient be enrolled in at least
one trial, and there is no penalty nor gain in suggesting multiple
relevant trials for a single patient. Formally, this problem is akin
to that of maximum coverage problem in computer science [9]. Re-
finements to the cohort coverage problem we have outline would
be to account for the non-uniform cost of assessing trials (some
trials may require more effort to assess), and non-uniform gains (a
trial for life-threatening conditions or a rare diseases); however, we
leave them to future work.

In cohort-based retrieval, the effectiveness of a system is then a
measure of what portion of the patient cohort (𝑄) is covered by the
ranking of trials (𝑇𝑄 ). We call this measure recruitment coverage
and define it for the whole patient cohort as:

rec_cov(𝑇𝑄 ) =
∑
𝑞∈𝑄 rel(𝑞,𝑇𝑄 )

|𝑄 | , (1)

rel(𝑞,𝑇𝑄 ) =
{
1, if

∑
𝑡 ∈𝑇𝑄 rel(𝑞, 𝑡) > 0

0, otherwise
(2)

and rel(𝑞, 𝑡) is 1 if trial 𝑡 is relevant to patient 𝑞, and 0 otherwise.
Thus rec_cov is 1.0 when 𝑇𝑄 contains at least one relevant trial
for every patient in 𝑄 .

5 METHODOLOGY
In this paper, we aim to understand the applicability of traditional,
single-query retrieval methods to the problem of cohort-based clin-
ical trial retrieval, and understand what advantages new cohort-
aware methods may provide.



ADCS ’21, December 9, 2021, Virtual Event, Australia Bevan Koopman and Guido Zuccon

Q = patient cohort T = clinical trials

TQ = single ranking for patient cohort

RQ = individual query/patient rankings

Clinician or 
clinical trial coordinator

Cohort-based 
retrieval

Traditional, 
single-query

ranking

Figure 2: Comparing the common approach of clinical trial
retrieval, which is traditional, single-query ranking with the
alternative of cohort-based retrieval.

This study uses data from the TREC Precision Medicine Track
(TREC PM) 2017 [17] and 2018 [16]. For both years, participants
were provided synthetic patient records as queries and tasked with
retrieving clinical trials crawled from ClinicalTrials.gov. Relevance
assessment was done by clinicians and the focus was on cancer
patients and trials. The TREC PM test collection was not devised
with cohort-based retrieval in mind and the patients were specific
to the cancer space. This, though, represents a realistic scenario
for cohort-based retrieval where there would, in fact, be a single,
similar source of patients — a specific cancer treatment clinic, for
example. Furthermore, the specific domain of cancer trials is large
enough and pressing enough in terms of critical access to new trials,
to warrant it as a focus in its own right.

In the next sub-sections, we describe a number of different meth-
ods to investigate cohort-based retrieval. Figure 3 is used as a visual
aid and we refer to different parts of the figure in subsequent sec-
tions.

5.1 Single-Query Ranking Systems
Given the TREC PM task, we established two single-query retrieval
systems: baseline and state-of-the-art. The baseline system used
BM25F as clinical trials are provided as XML files with separate
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}
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Figure 3: Various methods and experiments used in investi-
gating cohort-based retrieval.

fields.1 As patient record queries are often verbose we adopt the
query reduction technique of [10], shown to be effective in this
task. In addition, filtering on demographics (age, gender, pregnancy)
and trials status (recruiting status, location) was implemented via
boolean field restrictions. This system, denoted ‘Baseline CT’, rep-
resents a baseline IR system specific for clinical trials search.

To form a state-of-the-art system we used the best performing
runs from TREC PM, combing the best run from 2017 [14] with the
best run from 2018 [23]. This represents the most effective ranking
of trials for single queries; we denote it ‘TREC Best CT’. Figure 3
shows the single-query ranking systems in green.

5.2 Cohort Trial Ranking via Results Fusion
Given the single-query rankings provided by the systems outlined
above, we now consider cohort-based retrieval: providing a single
ranking 𝑇𝑄 for the entire query set 𝑄 . We adapt result fusion tech-
niques for this purpose [13]. In result fusion, typically rankings
from different systems — but for the same query — are fused to pro-
vide a single ranking for that query. Instead, we fuse the rankings
from different queries into a single ranking for the query set.

Assuming we have a set of ranked lists 𝑅𝑄 , with 𝑟𝑞 representing
the ranked list for a query 𝑞 ∈ 𝑄 , fusion methods would compute a
cohort retrieval score (CRS) for a trial 𝑡 by considering the scores 𝑡
obtained for each query (patient) 𝑞. The three fusion methods used
were:

CombSUM: Sums the retrieval scores of documents contained
in more than one rank list and rearranges the order:

𝐶𝑅𝑆CombSUM (𝑡) =
∑︁
𝑡 ∈𝑅𝑞

𝑠𝑐𝑜𝑟𝑒𝑟𝑞 (𝑡). (3)

CombMNZ: Sums the retrieval scores of documents contained
in more than one list, and multiplies their sum by the number of
lists where the document occurs:

𝐶𝑅𝑆CombMNZ (𝑡) = |{𝑟𝑞 : 𝑡 ∈ 𝑟𝑞}| ·
∑︁
𝑡 ∈𝑅𝑞

𝑠𝑐𝑜𝑟𝑒𝑟𝑞 (𝑡). (4)

Recip. Rank: Sums the reciprocal rank of documents contained
in each rank list:

𝐶𝑅𝑆RR (𝑡) =
∑︁
𝑡 ∈𝑅𝑞

1
𝑟𝑎𝑛𝑘𝑟𝑞 (𝑡)

. (5)

1Implemented in Elasticsearch v5.3; no stopping or stemming.
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Both CombSUM and CombMNZ involve combing scores from
different distributions. We normalise scores for each query using
minmax score normalisation:

norm_score(t) =
score(t) −min(𝑟𝑞)
max(𝑟𝑞) −min(𝑟𝑞)

. (6)

Figure 3 shows results fusion in blue.

5.3 Cohort-aware Greedy Ranking
The fusion techniques outlined so far do not take into account
the coverage and, therefore, do not optimise the final ranking for
rec_cov. To demonstrate whether this is a problem, next we utilise
the qrels to form a strong cohort-aware benchmark that ranks
trials according to rec_cov. Note that producing a true optimal
ranking of trials for a query set is an NP-hard problem, as the task
reduces to the maximum coverage problem [9]. We thus consider
heuristics for this problem. This involves first selecting the trial that
is relevant to (i.e., best covers) the most patients/queries, removing
these queries/patients from the list of candidates, then selecting
the next trial that best covers the remaining queries. The process
continues iteratively until the max number of trials 𝑟 is reached (or
until no more queries can be covered). Pseudo code for this process
is provided in Algorithm 1. This greedy-based algorithm, which
uses qrels, represents a sub-optimal, but computable, upper bound
effectiveness for cohort-based clinical trial retrieval; we denote it
‘GreedySetCover’.

A more naive cohort-based retrieval method is to simply rank
trials according to how many queries they are relevant to (again
using qrels). This differs from GreedySetCover in that it does not
consider which queries have been covered already by previous trials.
Thus two trials may be ranked highly because they cover a large
number of queries, but they happen to have high overlap — they
cover the same set of queries — so do not contribute to a higher
rec_cov. This naive greedy approach is denoted ‘GreedyNaive’.

Both these greedy approaches used the qrels to know which
trials were relevant to a patient; thus they were an oracle approach
rather than a real cohort-based retrieval method. Their purpose
was to study and understand how single-query retrieval compared
against cohort-aware approaches and understand the potential of
new cohort-aware methods.

Algorithm1 Pseudo code for set cover algorithm to produce cohort-
aware final ranking of trials.
Require: Q, T, r ⊲ Set of queries/patients, Trials, Max trials
Ensure: 𝑇𝑄 , 𝑄 ′ ⊲ Final ranking of trials, Patient cohort covered
1: 𝑇𝑄 , 𝑄

′ = {}
2: while |𝑇𝑄 | < 𝑟 do
3: select 𝑡𝑖 ∈ 𝑇 that covers the most queries in 𝑄

4: 𝑇𝑄 = 𝑇𝑄 ∪ {𝑡𝑖 }
5: 𝑇 = 𝑇 − {𝑡𝑖 }
6: 𝑄 ′ = 𝑄 ′ ∪ {queries covered by 𝑡𝑖 }
7: return rec_cov =

|𝑄′ |
|𝑄 |

5.4 Cohort-aware Diversity Reranking
The cohort-aware greedy ranking methods above explicitly model
coverage using the qrels; thus they cannot be used in practice.
Next we present a possible automatic cohort-aware method that
accounts for coverage without using qrels. We adapt the Maximal
Marginal Relevance (MMR) method [1], commonly used to diversify
search results [19], to the problem of cohort-aware ranking. MMR
computes the final score of a candidate document to be ranked by
interpolating the standard relevance score with a diversity score
computed with respect to the previous documents ranked so far.

In our adaption of MMR, we apply diversification after single-
query ranking, namely we first use fusion to produce a single list
of trials for the patient cohort, and then rerank this list via MMR.
We compute the diversity score by comparing a candidate trial
with a condensed representation of all the trials already ranked
thus far. Figure 3 shows diversity reranking in red. Specifically, for
the purpose of computing diversity scores, we represent a trial 𝑡𝑖
with a vector 𝑣𝑖 containing a likelihood distribution defined over
the patient cohort. Each element 𝑗 of the distribution refers to the
likelihood that trial 𝑡𝑖 is relevant to patient 𝑞 𝑗 . (This is taken from
whether the trial was retrieved for that query/patient in the single-
ranking system.) When iteratively building a ranking, we construct
a cumulative vector 𝑣𝑝 that represents the 𝑘 trials 𝑡1, . . . , 𝑡𝑘 ranked
so far, by summing the individual trial vectors 𝑣1, . . . , 𝑣𝑘 . We then
compare, using Jensen–Shannon divergence (JSD), the cumulative
trial vector 𝑣𝑝 with each of the candidate trial vectors 𝑣𝑐 for the
trials yet to be ranked. The candidate trial to be ranked at rank
position 𝑘 + 1 is then selected according to:

arg max
𝑡𝑐 ∈𝑇 \𝑡1,...,𝑡𝑘

[𝛼 ·𝐶𝑅𝑆 (𝑡𝑐 ) + (1 − 𝛼) · JSD(𝑣𝑝 , 𝑣𝑐 )] (7)

where 𝐶𝑅𝑆 (𝑡𝑐 ) is the cohort relevance score of a trial (according
to one of the fusion methods outline in Section 5.2) and 𝛼 is a
hyper-parameter that controls the mix of relevance and diversity.

Plainly put, we rank the trial by combining its relevance score
(𝐶𝑅𝑆) and how diverse it is with a cumulative representation of the
previous trials ranked so far, favouring trials that relate to patients
less covered in previous trials.

Note that diversity reranking via MMR is done as a means to
understand the influence of diversity rather than as a full-fledged
method we propose to solve the cohort-ranking problem. For the
latter, we would need sufficient training data in the form of multiple
patient cohorts in order to both properly set 𝛼 and to conduct
statistical tests of effectiveness. Since we do not have this data,
we instead explore how 𝛼 (i.e., diversity) influences recruitment
coverage and leave proper 𝛼 estimation to future work.

5.5 Evaluation Settings
Empirical evaluation was done using TREC PM 2017 and 2018 (30 +
50 topics), where documents were clinical trials from an April 2017
snapshot of ClinicalTrials.gov [16, 17]. For each topic, a maximum
of 1,000 clinical trials were retrieved. The BM25F-based single-
query ranking system had two free parameters: 𝑏 = 0.75, 𝑘1 = 1.2
(we set fields to have equal importance). The cohort trial ranking
methods based on result fusion were parameter-free. The cohort-
aware diversity method had a parameter 𝛼 which was tuned on the
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System Recip. Rank Prec@10 Prec@100 NDCG

Baseline CT 0.2944 0.2354 0.1099 0.2898
TREC Best CT 0.7745 0.5620 0.1914 0.5536

Table 2: Retrieval effectiveness for single-query ranking
systems. Results between systems statistically significant
(paired two-tails t-test, 𝑝 < 0.001) on all fourmeasures. NDCG
cut 1000.

evaluation corpus by sweeping 𝛼 = 0.0 (full relevance) to 1.0 (full
diversity), with step 0.1.

The two single-query ranking systems, Baseline CT and TREC
Best CT, were evaluated by averaging their effectiveness across the
query set. The evaluation measures were precision at 10, precision
at 100 and NDCG (cut 1000). P@10 models the use case of a clinician
accessing a patient’s record as part of a consultation. An IR system
can automatically initiate a search to find relevant clinical trials.
The clinician is time-pressured and would likely only review a small
number of trials. P@100 models the use case where the clinician
is specifically searching for clinical trials, may dedicate more time
and be willing to evaluate in the order of 100 trials (hence P@100).
NDCG (cut 1000) accounts for the rank position of relevant trials
and was an official measure at TREC PM. These measures show
the effectiveness of the single-query rankings but not the final,
cohort-based fused ranking.

The ultimate evaluation is what portion of the patient cohort
is covered by a final ranking of trials. The effectiveness of the
cohort-based retrieval is done according to the rec_cov measure.
Evaluation is done for the different fusion methods (CombSUM,
CombMNZ and RecipRank) for the Baseline CT and TREC Best CT
systems, as well as for the two cohort-aware rankings of Greedy-
Naive and GreedySetCover. Remember we stated that clinicians
would only consider trials up to a set depth 𝑟 ; thus we experiment
with a depth cutoff for rec_cov of r = [1, . . . , 10, 15, 20, 25, 30, 40,
50, 70, 90, 100, 150, 200].

6 RESULTS & ANALYSIS
6.1 How effective was single-query ranking?
First, we consider the single-query ranking system effectiveness,
reported in Table 2. The TREC Best runs were significantly better
than Baseline CT on all four measures. TREC Best CT returned
many more relevant trials within higher ranked positions than
Baseline CT. Using fusion, it would then be more likely that these
relevant documents would be included in the final cohort-based
ranking. More relevant documents in the cohort-based ranking
would likely have led to a higher rec_cov. This was the intuition
at least.

6.2 How effective was cohort-based retrieval via
single-query ranking fusion?

Figure 4 shows an aggregation of results for a number of facets of
cohort-based ranking. In the next sections, we consider different
aspects of this figure.

First, we consider how the fusion of the single-query rankings
impacted the ultimate recruitment coverage (rec_cov). This is
shown as black lines for each fusion method in the first three plots
(CombMNZ, CombSUM and RecipRank). (We leave the discussion
on diversity reranking, shown in red, for later in Section 6.3.) For
score-based fusion of CombMNZ and CombSUM, there was no large
difference in rec_cov for the two single-query rankings — TREC
Best CT was not much better then Baseline CT. This was surprising
given TREC Best CT was considerably better than Baseline CT for
the single-query setting already outlined in the previous section. In
fact, when the number of trials was less than 10, Baseline CT was
actually superior: e.g., for 𝑟 = 5, rec_cov(Baseline CT) = 0.2405
vs rec_cov(TREC Best CT) = 0.1899.

While different single-query rankings did not impact score-based
fusion, they did, instead impact rank-based fusion (as shown in
the third, RecipRank plot). Here, rec_cov was much greater when
fusion was applied to TREC Best CT. Two factors were at play for
RecipRank: First, the ranking scores were ignored. Scores may not
have been a good measure of the likelihood of relevance and thus
ignoring them in RecipRank may have been beneficial. Further,
even with minmax normalisation, scores may not have translated
well when fusing rankings from different queries, e.g., because of
different score distributions. Second, RecipRank fusion applied an
exponential decay in the weighting as it moved down the ranking.
The fact that a document was in a top-rank position had far more
influence on the final cohort-ranking than if the document appeared
in many single-query rankings. Said another way, trials that much
more closely matched a single patient were better than trials that
weakly matched multiple patients. This characteristic of RecipRank
may have also helped to ensure that the documents that did end up
in the final cohort-ranking were, in fact, relevant.

6.3 How effective was cohort-based diversity
reranking?

Now we consider the effect of diversity reranking, comparing each
red curve with its corresponding black equivalent. Diversity rerank-
ing was beneficial but in different ways. Diversity strongly im-
proved trials fused using TREC Best CT while having a much
smaller improvement on Baseline CT. Previously, we showed TREC
Best CT retrieved many more relevant trials than Baseline CT (Ta-
ble 2). (While these trials were relevant to one patient, they were
not diverse; thus they did not translate to high rec_cov.) Now con-
sider what happens when diversity is applied to TREC Best CT
and to Baseline CT. Using TREC Best CT you have a large pool
of relevant documents to draw on to rerank via diversity; using
Baseline CT you risk bringing in non-relevant documents as you
rerank via diversity. Thus applying some cohort-based diversity
to the good quality initial retrieval of TREC Best CT yields much
better recruitment coverage.

Diversity reranking was done by interpolating the relevance
and diversity scores using the mixing parameter 𝛼 . Figure 5 shows
how applying diversity (𝛼) to trial ranking impacted recruitment
coverage (𝛼 = 0.0 only relevance, 𝛼 = 1.0 only diversity). We can
see that diversity reranking was beneficial but how so depended
on the fusion method: score-based fusion methods CombMNZ and
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Figure 4: The effectiveness of cohort-based retrieval as measured by rec_cov (𝑦-axis) for different fusion methods (CombMNZ,
CombSUM, RecipRank) applied to different single-query rankings (Baseline CT and TREC Best CT). Cohort-aware rankings
used qrels to provide comparison: GreedyNaive ignoring query overlap and GreedySetCover showing benefits of complete
knowledge of overlap. The 𝑥-axis shows the number of trials a clinician would review.

CombSUM benefitting frommore diversity reranking than the most
effective fusion method, RecipRank.

6.4 What is the relationship between
single-query effectiveness and cohort
recruitment coverage?

Previously we observed that single-query ranking effectiveness
does not always translate directly to recruitment coverage effec-
tiveness. To better understand the effect of single-query ranking
effectiveness we manually produced single-query rankings that
had set precision levels of precision at 10 of [0.1, .., 1.0]. (This was
done by producing rankings of 10 documents containing 1..10 rel-
evant documents from the qrels.) The rankings were then fused
and the corresponding rec_cov score calculated. The results of this
experiment is shown in Figure 6.

Without diversity reranking, as we manually increase precision
at 10 from 0.0, rec_cov increases. However, beyond 0.4 in precision
(i.e., 4 relevant documents in top 10) rec_cov does not increase.
This shows that even though more relevant clinical trials are being
returned by the single-query ranking systems, these trials do not
help to increase coverage. For example, they may just be more
relevant trials for a single patient rather than matching multiple
patients. Instead, when diversity with respect to the patient cohort
is injected via diversity reranking, rec_cov continues to increases
because the growing pool of relevant trials is being reranked to
favour those that match multiple patients/queries.

6.5 How effective was cohort-aware greedy
ranking?

We now consider the two cohort-aware greedy ranking methods,
GreedyNaive and GreedySetCover, in Figure 4. Recall that Greedy-
Naive simply ranked trials by the number of queries that it matched

and did not take into account any overlap of these queries. First,
we obverse that GreedyNaive was actually not as effective as Re-
cipRank. GreedyNaive’s lack of effectiveness tells us that the trials
preferred by GreedyNaive were those that matched a common set
of overlapping queries/patients. These may have been very gen-
eral trials, for example, for which many patients could have been
eligible. However, they still did not cover that much of the overall
patient cohort, hence the poor rec_cov for GreedyNaive. These
results tell us that if we were to build a specialised cohort-based
ranking model, not accounting for overlap would severely hamper
effectiveness.

The GreedySetCover results tell us what was possible when
we had complete knowledge of overlap. The marked difference in
effectiveness between GreedySetCover and GreedyNaive shows the
importance of considering overlap.

From the figure, we see it was possible to obtain complete cover-
age (i.e., rec_cov = 1.0), across the 80 patients, with just 30 trials.
The fact that only 30 trials were needed highlights that it was the
case that some trials match multiple patients. In turn, this further
motivates taking a cohort-based retrieval approach, with all its
benefits: reduced recruitment effort, less clinician screening time
and greater access for patients to new treatments.

How well can we do with automated cohort-based ranking?
GreedySetCover sets the local optimal2 for rec_cov when ranking
iteratively (greedy) with respect to cohort coverage. We compare
this to the best fusion-based method of RecipRank (Figure 4). Re-
cipRank actually performs close to the optimal GreedySetCover
for early rank positions (i.e., low value of 𝑟 ). If we return to one of
our original use cases — a busy doctor able to review only a small

2A global optimal is only attainable by solving the NP-hard maximum coverage prob-
lem [2, 9].
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Figure 5: The impact of diversity scoring on cohort-based retrieval. Fusion is done on the two single-ranking system (Baseline
CT & TREC Best CT) using the three fusion methods. The diversity mix (𝛼) is varied from 0.0 (only relevance, no diversity) to
1.0 (no relevance vs. only diversity). Results show diversity reranking improved rec_cov.
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Figure 6: The impact of single-rankings of set effectiveness on rec_cov. Manually produced rankings for set precision at 10
levels (𝑥-axis) and the impact of these on rec_cov (𝑦-axis).

number of trials — we can see that RecipRank would be highly ef-
fective. However, RecipRank begins to diverge from the optimal as
𝑟 > 10. GreedySetCover achieves complete coverage (rec_cov=1.0)
when 𝑟 ≈ 25. While RecipRank continues to improve past this
point, it does not achieve complete coverage within the first 100
trials. Thus for the use case of really wanting to maximising full
recruitment coverage, RecipRank would not be sufficient and more
work is required.

7 CONCLUSION & FUTUREWORK
This study provides an initial foray into the problem of cohort-
based clinical trials retrieval; that is, devising a ranking of clinical
trials that covers as much of the patient cohort of queries as possi-
ble. First, we formalised this problem, showing how cohort-based

ranking contrasted with single query ranking. Furthermore, we
highlighted how the objective of cohort-based is that of coverage
across the query set — we introduced rec_cov as a means to mea-
sure coverage.

Cohort-based retrieval can be achieved through result fusion. We
applied fusion techniques to fuse the rankings from different queries
(as opposed to different systems), thus producing a cohort-based
ranking for the patient cohort. We implemented three result fusion
techniques, applied to two single-query rankings: a Baseline clinical
trials system and the TREC Best clinical trial systems. Empirical
evaluation on the TREC Precision Medicine track showed that
the TREC Best system was significantly better in terms of single-
query evaluation. However, and perhaps surprisingly, this did not
translate to so large a corresponding improvement in cohort-based
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retrieval as measured by rec_cov. The differences in effectiveness
were also highly dependent on how many trials were considered in
the cohort-based ranking, equating to how many trials a clinician
may manually review as part of a patient recruitment exercise.

To provide further insights into cohort-based retrieval, we imple-
mented two oracle, greedy cohort-aware methods that used qrels
to rank trials. These highlighted that trials that match many pa-
tients often overlap in the patients they match, suggesting that it
is necessary to explicitly model the coverage and overlap when
producing an effective cohort-based ranking. Also, through the ex-
ploration of greedy heuristics, we were able to show that the entire
80 patients cohort could be fully covered by retrieving a small set
of only 30 trials. We tied this back to the benefits of cohort-based
retrieval in terms of reducing the effort in clinical trials recruit-
ment and providing more patients with access to new and emerging
treatments.

With the greedy methods providing evidence for the benefit of
cohort-aware methods, we adapted existing diversity ranking [19]
methods to rank trials that increase patient coverage. Diversity
reranking did show promise, while multiple cohort datasets were
needed to properly estimate the mix of diversity vs. relevance (𝛼).

While TREC Precision Medicine provided the right data and
use case for cohort-based retrieval, it had some limitations. TREC
PM mainly focused on matching cancer patients to oncology trials,
where there is additional genetic information about the patient.
None of the methods, experiments or analysis of this paper was
specific to this cancer related setting; however, the results may
differ outside of the cancer space. That said, matching patients
to trials in the cancer space is critical in its own right and even
isolating cohort-based retrieval to just this area is still justification
enough for such work. An additional limitation of our empirical
evaluation is that only one cohort of patients was used. Ideally, we
would have multiple cohorts of different patient populations. This
would allow statistical comparisons between these to determine if
findings generalise. For example, to determine if the single-query
rankings (Baseline CT vs. TREC Best CT) led to statistically different
rec_cov effectiveness, we would need a set of patient cohorts to
evaluate on.

Having provided the motivation and evidence for cohort-based
retrieval, we now intend to investigate specific retrieval methods
that rank trials directly from a patient cohort rather than fusing
single-query rankings. Beyond this, a learning-to-rank approach,
that takes as input a cohort of patients, and is able to extract multiple
features from trials, would be our goal. As part of this, it would be
necessary to encode features related to overlap and coverage. How
to do this generically for any cohort of patients is an open line of
enquiry.

REFERENCES
[1] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335–336.

[2] Ben Carterette. 2011. An analysis of NP-completeness in novelty and diversity
ranking. Information Retrieval 14, 1 (2011), 89–106.

[3] Steven R Chamberlin, Steven D Bedrick, AaronM Cohen, YanshanWang, Andrew
Wen, Sijia Liu, Hongfang Liu, and William R Hersh. 2020. Evaluation of patient-
level retrieval from electronic health record data for a cohort discovery task.
JAMIA open 3, 3 (2020), 395–404.

[4] Giorgio Maria Di Nunzio, Stefano Marchesin, and Maristella Agosti. 2019. Explor-
ing how to Combine Query Reformulations for Precision Medicine.. In TREC.

[5] Tracy Edinger, Aaron M Cohen, Steven Bedrick, Kyle Ambert, and William Hersh.
2012. Barriers to retrieving patient information from electronic health record
data: failure analysis from the TREC medical records track. In AMIA annual
symposium proceedings, Vol. 2012. American Medical Informatics Association,
180.

[6] Erik Faessler, Udo Hahn, and Michel Oleynik. 2019. JULIE Lab & Med Uni Graz@
TREC 2019 Precision Medicine Track.. In TREC.

[7] Travis R Goodwin and Sanda M Harabagiu. 2018. Learning relevance models for
patient cohort retrieval. JAMIA open 1, 2 (2018), 265–275.

[8] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3, 1 (2016), 1–9.

[9] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. 1999. The budgeted maximum
coverage problem. Inform. Process. Lett. 70, 1 (1999), 39 – 45.

[10] Bevan Koopman, Liam Cripwell, and Guido Zuccon. 2017. Generating Clinical
Queries from Patient Narratives: A Comparison between Machines and Humans.
In SIGIR. Tokyo, Japan.

[11] Bevan Koopman and Guido Zuccon. 2014. Understanding Negation and Family
History to Improve Clinical Information Retrieval. In Proceedings of the 37th
annual international ACM SIGIR conference on research and development in infor-
mation retrieval. ACM.

[12] Bevan Koopman and Guido Zuccon. 2016. A test collection for matching patients
to clinical trials. In SIGIR. 669–672.

[13] Oren Kurland and J. Shane Culpepper. 2018. Fusion in Information Retrieval:
SIGIR 2018 Half-Day Tutorial. In SIGIR. 1383–1386.

[14] ASM Ashique Mahmood, Gang Li, Shruti Rao, Peter B McGarvey, Cathy H Wu,
Subha Madhavan, and K Vijay-Shanker. 2017. UD_GU_BioTM at TREC 2017:
Precision Medicine Track. In TREC.

[15] Lynne T Penberthy, Bassam A Dahman, Valentina I Petkov, and Jonathan P
DeShazo. 2012. Effort required in eligibility screening for clinical trials. Journal
of Oncology Practice 8, 6 (2012), 365–370.

[16] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, William R. Hersh,
Steven Bedrick, and Alexander J. Lazar. 2018. Overview of the TREC 2018
Precision Medicine Track. In TREC.

[17] Kirk Roberts, Dina Demner-Fushman, Ellen M Voorhees, William R Hersh, Steven
Bedrick, Alexander J Lazar, and Shubham Pant. 2017. Overview of the TREC
2017 Precision Medicine Track. In TREC.

[18] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, William R. Hersh,
Steven Bedrick, Alexander J. Lazar, Shubham Pant, and Funda Meric-Bernstam.
2019. Overview of the TREC 2019 Precision Medicine Track. In Proceedings of
the Twenty-Eighth Text REtrieval Conference, TREC 2019, Gaithersburg, Maryland,
USA, November 13-15, 2019 (NIST Special Publication), Ellen M. Voorhees and
Angela Ellis (Eds.), Vol. 1250. National Institute of Standards and Technology
(NIST). https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.PM.pdf

[19] Rodrygo LT Santos, Craig Macdonald, Iadh Ounis, et al. 2015. Search result
diversification. FnTIR 9, 1 (2015), 1–90.

[20] Ellen M Voorhees and William R Hersh. 2012. Overview of the TREC 2012
Medical Records Track. In TREC.

[21] Ellen M Voorhees and Richard M Tong. 2011. Overview of the TREC 2011 Medical
Records Track. In Proceedings of the Twentieth Text REtrieval Conference (TREC
2011). Gaithersburg, Maryland, USA.

[22] Qi Zheng, Yong Li, Jiaying Hu, Yan Yang, Liang He, and Yi Xue. 2019. ECNU-ICA
team at TREC 2019 Precision Medicine Track.. In TREC.

[23] Xuesi Zhou, Xin Chen, Jian Song, Gang Zhao, and Ji Wu. 2018. Team Cat-Garfield
at TREC 2018 Precision Medicine Track. In TREC.

[24] Dongqing Zhu, Stephen Wu, Ben Carterette, and Hongfang Liu. 2014. Using
large clinical corpora for query expansion in text-based cohort identification.
Journal of biomedical informatics 49 (2014), 275–281.

https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.PM.pdf

	Abstract
	1 Introduction
	2 The Use Case for Cohort-based Trial Retrieval
	3 Related Work
	4 Formalising the Patient Cohort Coverage Problem
	5 Methodology
	5.1 Single-Query Ranking Systems
	5.2 Cohort Trial Ranking via Results Fusion
	5.3 Cohort-aware Greedy Ranking
	5.4 Cohort-aware Diversity Reranking
	5.5 Evaluation Settings

	6 Results & Analysis
	6.1 How effective was single-query ranking?
	6.2 How effective was cohort-based retrieval via single-query ranking fusion?
	6.3 How effective was cohort-based diversity reranking?
	6.4 What is the relationship between single-query effectiveness and cohort recruitment coverage?
	6.5 How effective was cohort-aware greedy ranking?

	7 Conclusion & Future Work
	References

