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ABSTRACT

We study machine learning techniques to automatically identify limb abnormalities (including fractures, dislocations
and foreign bodies) from radiology reports. For patients presenting to the Emergency Room (ER) with suspected
limb abnormalities (e.g., fractures) there is often a multi-day delay before the radiology report is available to ER staff,
by which time the patient may have been discharged home with the possibility of undiagnosed fractures. ER staff,
currently, have to manually review and reconcile radiology reports with the ER discharge diagnosis; this is a laborious
and error-prone manual process. Using radiology reports from three different hospitals, we show that extracting
detailed features from the reports to train Support Vector Machines can effectively automate the identification of limb
fractures, dislocations and foreign bodies. These can be automatically reconciled with a patient’s discharge diagnosis
from the ER to identify a number of cases where limb abnormalities went undiagnosed.

Introduction

The misdiagnosis of a patient’s true clinical condition due to misinterpretation of radiological evidence by the treating
clinician is an occasional problem in hospital emergency departments. There is always a time delay between report-
ing of the radiologist and clinical treatment by the Emergency Room (ER) clinician. The large amount of manual
processing of unstructured text is one of the main issues that can be resolved by technology enabled solutions.

A good example of a misdiagnosis issue is the identification of subtle limb abnormalities (fractures, dislocation or
foreign bodies). Radiological evidence of limb abnormalities, when subtle, can be missed by clinicians working in the
ER. The reporting of a abnormalities by a radiologist may not occur in real time and therefore may not be available
to the clinician treating a patient. Consequently, patients may be sent home without appropriate treatment and follow
up. A study by Cameron1 reported that 2.1% of all fractures were not identified on their initial presentation to the
ER. Furthermore, Sprivulis and Frazer9 reported that 1.5% of all x-rays have abnormalities not identified in the ER
records. Similarly, Mounts et al.5 reported that 5% and 2% of the x-rays of the hand/fingers and ankle/foot from a
paediatric ER had fractures missed by the treating clinician. Although small, these percentages are not insignificant.

The need to reduce errors is well recognised4,7,8. To ensure a diagnosis is not missed, radiology reports are commonly
checked and patient records are reviewed, but this may not happen until days after the initial presentation. The
current clinical practice of identifying limb abnormalities from radiology reports is highly labour intensive and is
subject to human error or omissions. There is a need to streamline the process of identifying missed abnormalities for
better patient outcomes. Technology enabled solutions that can streamline the diagnosis identification would certainly
improve efficiency in the existing process.

Previous work has focused on automatically detecting fractures from free-text radiology reports. De Bruijn et al.3

considered acute fractures of the wrist and reported that a Support Vector Machine algorithm (SVM) was able to
identify fractures in free-text radiology notes, achieving an overall F-measure of 91.3%. While, Thomas et al.10

developed a text search algorithm that accurately classified radiology reports into the categories “fracture”, “normal”
and “neither normal nor fracture”. Zuccon et al.15 have studied Naive Bayes and Support Vector Machines based
classifiers for the identification of limb abnormalities. They have shown that machine learning techniques coupled
with both word and semantic features are very effective for this task, achieving an overall F-measure of 92.3%. Their
evaluation however was limited to a sample of 99 radiology reports from a single hospital radiology service.



Table 1: Three different datasets of radiology reports, along with the number of normal and abnormal cases as identi-
fied through our annotation process. The average document length for free-text reports in each dataset is also recorded:
the large difference in average length between GCH and RBWH/RCH may be due to differences in reporting language
and style conventions.

Dataset Description #Reports Normal Abnormal Avg. Doc. Len.

RBWH Royal Brisbane & Womens’ Hospital (adult) 1,480 58% 42% 52 words
RCH Royal (Brisbane) Childrens’ Hospital (child) 498 66% 34% 50 words
GCH Gold Coast Hospital (adult 62% & child 38%) 400 62% 38% 27 words

In this paper, we develop upon the work of Zuccon et al.15 and we experiment with the automatic classification of
free-text radiology reports for identifying abnormalities of limb structures using machine learning algorithms and
features such as bigrams formed by stemmed tokens, negations, and SNOMED CT concepts extracted from the free-
text. While previous work has shown promise, it does not address a number of important areas for the practical use
of such techniques in a clinical setting. We outline these below and highlight the contribution this study makes in
addressing each.

1. Where the majority of the existing methods only used term-based features we extract medical concepts from the
SNOMED-CT ontology and exploit these for training the classification model.

2. Previous studies used datasets that were small and homogenous. An important requirement for the general
applicability of these methods is the robustness of the models across different hospital datasets; i.e., how well
would one method, developed using one hospital’s set of reports work when deployed at another hospital, where
particular institutional conventions may result in different language and authoring styles in radiology reports.
In addition, radiology reports for children and adults may also differ. To address this issue, we evaluate our
method on three different sets of radiology reports from three different hospital’s (adults and children). We
empirically show, via different training/test combinations, that the method developed on one hospital’s reports
(with differing conventions and patient cohorts) can be applied to another with marginal loss in effectiveness.

3. Finally, and perhaps most importantly, we investigate how the classification of radiology reports can be used
in a real clinical setting to reconcile the radiology diagnosis with that of the patient’s discharge diagnosis from
the ER, thereby identifying a number of cases where limb abnormalities may have been undiagnosed. Thus
we study an end-to-end application of natural language processing and machine learning to aid clinicians in the
identification of undiagnosed limb abnormalities.

Materials Methods

Data

A set of 2,378 free-text radiology reports of limb structures was acquired from the Emergency Department of three
large Australian public hospitals (adult, children and mixed adult/children). Ethics approval was granted by the Human
Research Ethics Committee at Queensland Health to use the non-identifying data. Free-text reports were short in
length, containing on average 47 words, and an (unstemmed) vocabulary comprising 4846 unique words. Details of
the three datasets are outlined in Table 1. Free-text reports in the GCH dataset were found to be on average consistently
shorter than those in the other two datasets: this may indicate differences in reporting style and conventions between
the hospital sites.

Free-text reports were manually annotated by an Emergency Medicine Registrar and a Medical Officer as being either:

“normal” — the radiography does not exhibit a fracture, dislocation or presence of a foreign body; or
“abnormal” — some fracture, dislocation or foreign body was found.



A software tool was developed to assists clinicians in the recording of their interpretation and to highlight the portion
of text in the report that lead to their interpretation.

Initially, assessors agreed on the annotations of 2,215 out of the 2,378 reports. A senior Staff Specialist in Emergency
Medicine was then asked to act as third assessor and resolve disagreements. The distribution of normal and abnormal
cases across the three datasets is reported in Table 1. The Fleiss’ kappa (κ) calculated on the initial set of annotations
provided by the two first assessor was 0.85, thus exhibiting strong inter-rater reliability.

Automatic Feature Extraction and Weighting

Machine learning algorithms require documents to be described by features. The text analysis capabilities of the
Medtex tool were developed to automatically extract features from the free-text radiology reports6. Medtex is a text
analysis system that has been previously used for classify cancer-notifiable pathology reports and produce a minimum
set of synoptic factors. A wide range of features were initially extracted, including:

• token, i.e., a word found in a report;
• punctuation;
• token stem, i.e., the stemmed version of a word contained in a report;
• token negation, i.e., if a token or phrase was explicitly negated (e.g., “no fracture”); the Medtex implementation

of the ConText algorithm2 was used to identify negations in free-text;
• token stem bi-gram, i.e., a pair of adjacent stemmed words as found in a report;
• token stem tri-gram, i.e., a 3-tuple of adjacent stemmed words contained in a report;
• SNOMED CT concepts extracted from the text of the report;
• the fully specified terms of extracted SNOMED CT concepts restricted to morphologic abnormalities and disor-

ders;
• SNOMED CT concept bi-gram, i.e., a pair of adjacent SNOMED CT concepts as found in a report.

While a number of these features are commonly used for the classification of free-text documents, the use of SNOMED
CT features have not been widely evaluated by previous works on classification of radiology reports. To our knowl-
edge, only Zuccon et al.15 investigated these features but their evaluation was limited to a small sample of 99 radiology
reports. SNOMED CT provides a clinical terminology which was used to map various descriptions of a clinical con-
cept to a single standard clinical terminology. In this work, the SNOMED CT ontology was used as an underlying
mechanism to classify free-text using semantically matching SNOMED CT concepts. Previous empirical results have
shown that SNOMED CT concepts, in particular those referring to abnormalities (e.g., fracture, dislocation, etc.) and
disorders (e.g., fracture of bone, traumatic injury, etc.), provide valuable evidence for representing free-text radiology
report data15. Table 2 provides an example of feature sets extracted from the free-text of the radiology reports.

Table 2: Features extracted from two example free-text radiology reports; a 1 corresponds to the feature being present.
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Automatic Classification and Evaluation Methodology

To classify radiology reports we used the Weka toolkit API14 and the corresponding implementation of the SMO
classifier. The SMO classifier is a support vector machine (SVM) algorithm where training is performed according to
the sequential minimal optimisation algorithm and a polynomial kernel is used. Parameters of all three classifiers are
set to the default values (see Witten et al.14 for details).

To explore the effectiveness of the machine learning classifier for identifying limb abnormalities we conducted three
sets of experiments.

Experiment 1. We combine all three datasets of Table 1 and use the 10-fold cross validation methodology to evaluate
the classification algorithms. In this methodology, the dataset is randomly divided into 10 stratified folds of equal
dimension (in our case nine folds will contain 238 reports, while the remaining fold will contain only 236 reports).
The model for each classifier was then learnt on nine of these folds, leaving one fold out for testing the model. The
process was repeated by selecting a new fold for testing, while a new model was learnt from the remaining folds.
Classification performances were then averaged across the folds left out in each iteration. The aim of this experiment
was to evaluate the effectiveness of a classifier learnt on the whole combination of datasets.

Experiment 2. We consider the reports from each hospital dataset separately. For each dataset, we use the 10-fold
cross validation methodology to evaluate the classification algorithms specific to that dataset. Thus, experiments on
the larger RBWH dataset are characterised by larger folds than those on the remaining two smaller datasets. The
aim of this experiment was to evaluate the effectiveness of classifiers specifically learnt on individual datasets and
thus individuate whether a dataset is more challenging than others for automatic classification (and what the possible
causes for this are).

Experiment 3. We performed a split train/test evaluation: train on one hospital’s reports and test on another hospital’s
reports. This procedure was repeated for all combinations of hospitals and included training on reports from two
hospitals and testing on those from another. The aim of this last experiment was to evaluate the robustness of our
method across reports from different hospitals.

As a baseline for comparison against our machine learning method, we included a keyword spotting system, which
resembled the method by Thomas et al.10 and Wagholikar et al.13. A set of regular expressions were defined based on
common phrases or terms that identify an abnormality; these were based on discussion with a senior Staff Specialist
in Emergency Medicine. (Details of the regular expressions are provided in Appendix A.)

Two evaluation measures were considered: precision and recall (also called positive predictive value and sensitivity,
respectively). Precision is the fraction of positively classified reports that contain abnormalities1, while recall is the
fraction of actual abnormalities that were positively classified.2 In addition, to provide a single, overall evaluation
measure, precision and recall are combined into a third evaluation measure, F-measure.3

Reconciliation of Radiology Reports with Emergency Room Discharge Diagnosis

Using the methods described here we are able to automatically identify abnormalities from a patient’s radiology report.
The benefit of such a method is the ability to reconcile the abnormality classification with the discharge diagnosis from
the ER to ensure that an abnormality did not go unrecognised and the patient discharged without proper treatment.
To demonstrate the utility of this, we reconciled all the radiology reports used in the classification task with the ER
discharge diagnosis ICD-10 code. If the ER discharge diagnosis ICD-10 code matched a predefined set of “abnormal”
codes then the patient was marked as abnormal; else they were marked “normal”.4 (The full list of ICD-10 codes
considered as abnormal was provided by an ER clinician (KC) and is provided in Appendix B.) Patients that had a
abnormal radiology classification using our automated method but did not have any abnormality related ICD-10 code

1Precision = True Positives / (True Positives + False Positives).
2Recall = True Positives / (True Positives + False Negatives).
3F-measure = 2 * (Precision * Recall) / (Precision + Recall).
4Note that in Australian Emergency Departments ICD-10 codes are used as a diagnostic classification and are not used for billing purposes.



Table 3: Classification results for each of the three datasets, comparing the proposed machine learning method (SVM)
against the keyword baseline. The percentage change in F-measure shows the improvement of SVM over the keyword
baseline.

Dataset Method Precision Recall F-measure

RBWH Keyword 0.73 0.61 0.67
SVM 0.88 0.91 0.89 (+33%)

RCH Keyword 0.74 0.78 0.76
SVM 0.96 0.94 0.95 (+25%)

GCH Keyword 0.94 0.58 0.72
SVM 0.96 0.94 0.95 (+32%)

All Keyword 0.76 0.64 0.69
SVM 0.92 0.92 0.92 (+33%)

Table 4: Split dataset training/testing F-measure results. Grey shaded cells represent cross validation results; all other
results are train/test.

Testing
GCH RBWH RCH All

Tr
ai

ni
ng

GCH 0.95 0.80 0.88
RBWH 0.84 0.89 0.85

RCH 0.87 0.81 0.95
GCH+RBWH 0.88

GCH+RCH 0.80
RBWH+RCH 0.84

All 0.91

recorded in the ER discharge diagnosis were flagged as possible misdiagnosis for immediate followup.

Classification Results and Discussion

The overall classification results (Experiments 1 and 2) are shown in Table 3. F-measure was used as the overall
effectiveness measure and the percentage change in F-measure shows the improvement of the machine learning method
over the keyword baseline. For all hospital datasets, the SVM method outperformed the keyword baseline in all
evaluation settings. This is consistent with previous results15. In addition, the keyword baseline had more variance
across datasets (lower on RBWH, higher on RCH), whereas the SVM method was more stable across datasets. For the
SVM method, both precision and recall were of similar value, indicating that the errors that did occur were a mixture
of false positive and false negatives.

Split Dataset Training and Testing

The split training/testing F-measure results (Experiment 3) are shown in Table 4. The first column in the table corre-
sponds to the dataset used in training; the first row corresponds to the dataset the model was tested on; grey shaded
cells are the previous cross validation results repeated from Table 3. Comparison with the grey cell cross validation
results shows that there was some loss in effectiveness when applying models across datasets (e.g., F-measure of
RBWH was 0.89 for cross validation and 0.80–0.81 when trained on other datasets). However, even with some loss in
effectiveness, the results indicate that the models were still robust when applied across datasets (certainly compared to
the results of the keyword baseline).



●

●

●

●

●

●

●

●

●
GCH

GCH/RBWH

GCH/RCH

RBWH/GCH

RBWH

RBWH/RCH

RCH/GCH

RCH/RBWH

RCH

0.80

0.85

0.90

0.95

0.030 0.035 0.040 0.045 0.050
Similarity score

F
−

m
ea

su
re

Figure 1: Comparison of similarity between datasets (or itself) and F-measure effectiveness of the classifier. Points
with two datasets represents a different train/test combinations (e.g., RCH/GCH = train on RCH test on RCH), while
points with a single dataset (e.g., RCH) are the cross validation results for a single dataset.

Combining datasets for training (e.g., train on GCH+RBWH, test on RCH) showed no significant benefit over using
a single dataset to train (e.g., train on RBWH, test on RCH). This result reveals that simply adding more training data
does not lead to immediate improvement in effectiveness. Instead, effectiveness was more influenced by the particular
dataset used for training. For example, when testing on GCH, it was better to train on RCH than RBWH, even though
RBWH was a larger dataset. Based on this finding we set out to understand how similar each of the three datasets
were to each other in order to explain the differences in effectiveness in training/testing combinations.

Dataset Similarity and its Effect on Performance

A pairwise similarity calculation was made between the three datasets. This was done by comparing the similarity of
every document in one dataset to every other document in another dataset and recording the overall mean similarity.
The similarity measure between two individual documents can be calculated by taking the cosine angle between the
two documents’s term vectors, a standard approach applied in information retrieval when comparing text11. Note
that the average similarity of a dataset to itself (e.g., GCH vs. GCH) can actually be interpreted as a cohesiveness
measure: how similar reports in the dataset are to each other. To understand the similarity results in light of the
classifier effectiveness we provide a plot of similarity vs. F-measure in Figure 1 and discuss this in further detail
below.

We first consider the cohesiveness of each dataset with itself (i.e., single dataset points). The child-only reports of
RCH were the most cohesive, while the mixed adult/child reports of GCH were understandably the least cohesive;
adult reports from RBWH were in between. The cross validation training on these datasets obtained the best F-
measure — obviously it is best to train and test on same dataset. For these three cross-validated datasets, similarity
did not correlated with F-measure (e.g., GCH still had a high F-measure but the lowest similarity score).

Comparing across datasets, any combination containing both RCH (children) and GCH (mixed) had the lowest simi-
larity yet produced the best F-measure (and effectiveness was similar for both RCH/GCH and GCH/RCH). In contrast,
for the other four dataset combinations that contained RBWH the F-measure was lower. In addition, there was a large
difference in F-measure for swapping the training/test combination, i.e., RBWH/RCH was lower than RCH/RBWH.
For all four combinations that involved RBWH, training on RBWH was better than testing on RBWH. An immediate



Figure 2: Breakdown of different diagnoses combinations for each hospital dataset. Red (ER Normal & Radiology
Abnormal) indicates the patient had a “abnormal” classification from radiology and a “normal” diagnosis from ER.
For such cases, the patient was flagged as a possible missed abnormality.
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explanation for this could be the larger training size of RBWH; however, the aforementioned GCH/RCH combinations
showed the best effectiveness with much less training data. Overall, similarity (as measured here) did not correlate
strongly with F-measure.

These results highlight that there are differences in terms of similarity and effectiveness for training/testing combi-
nations, with some datasets being easier to classify than others. Variance in training data (as represented by smaller
similarity scores for GCH and RCH) provides the model with mix of data for learning different reporting styles; while
larger datasets (i.e., RBWH) are better for training but not testing. This combination of variance (i.e., similarity) and
size of datasets needs to be considered when selecting appropriate training sets. Importantly, however, the overall
differences in terms of effectiveness (F-measure) are small. Thus the classification models are generally robust across
these different types of datasets — an important requirement for their use in a real clinical setting.

Reconciliation Results and Discussion

The reconciliation process involved checking the classification of a patient’s radiology report with their ICD-10 dis-
charge diagnosis from the ER. Four different ER / Radiology combinations were possible: 1) Emergency Abnormal
& Radiology Normal; 2) Emergency Normal & Radiology Abnormal; 3) Both Abnormal; 4) Both Normal. For case
2) (where the patient had a “abnormal” classification from radiology and a “normal” diagnosis from ER) the patient
was flagged as a possible missed diagnosis case. The breakdown of these four combinations for each hospital dataset
is shown in Figure 2. The majority of patients had no abnormality recorded in both radiology and ER (light green,
Both Normal), followed by patients with abnormalities recorded in both radiology and ER (green, Both Abnormal). A
small number of cases were found with no abnormality in radiology but an abnormality in ER (orange, ER Abnormal –
Radiology Normal); this occurred when the ER clinician suspected a condition but this turned out to be negative from
the radiological assessment (and was, therefore, not an area of major concern). Finally, the number of patients flagged
(red), out of the total number of patients, were: GCH 16 / 400 (4%), RCH 26 / 498 (5%) and RBWH 232 / 1480
(16%). The number of flagged cases was considerably higher than previous studies on quantifying missed fracture
rates1 (especially for the RBWH dataset). To understand the reason behind this, we performed a manual analysis of



Table 5: Categories used in the manual review of all flagged cases (i.e., Emergency Normal & Radiology Abnormal).

Category Definition Example Diagnosis Comment/Action Required

Unrelated
Diagnosis

The patient was assigned an ICD-10 diagnosis
unrelated to a possible abnormality.

Gout, Self-harm, Congestive
heart failure

Case requiring review by ER
clinician.

Related
Diagnosis

A condition was recorded that could relate to /
cover an abnormality but it was not certain.

Crush injury, Laceration,
Strain or sprain

Case requiring review by ER
clinician.

More
General
Diagnosis

More general condition that could cover an ab-
normality was coded, often as a result of im-
precise ICD-10 coding. These cases should
meet the condition “fracture ISA 〈ICD-10
Diagnosis〉”.

fracture ISA Injury of the
lower foot.

Coding issue, currently re-
quiring review by ER clini-
cian but should address cod-
ing issue in the long term.

Missed
Diagnosis

Real case of where ED clinician may have
missed a limb abnormality.

No injury found, Patient did
not wait.

Cases for actual follow up by
ER clinician.

all ER Normal – Radiology Abnormal (red) cases, reviewing both the radiology report, discharge diagnosis ICD-10
code and any associated ER notes. (The judgements were primary provided by the clinical author, KC.)

Our manual analysis showed that the ER discharge diagnosis ICD-10 code was often ambiguous — it may have
covered a fracture diagnosis (and thus an abnormality) but this was not explicit. For example, a patient with a fracture
noted in their radiology report was discharged with S57 (Crushing injury of forearm). For this case, the clinician’s
judgement was that it was not certain whether the crush injury actually indicated a fracture and therefore whether the
ER clinician actually knew a fracture was present. S57 could not be added to the abnormal list as crush injury does
not imply a fracture or other limb abnormality as defined here; indeed, there were many patients diagnosed with this
code who did not have a fracture finding. Another common case was a discharge diagnoses of “strain or sprain” where
an uncertain or very minor fracture was indicated in the radiology reports. For such cases, the ER clinician may have
treated the patient (and therefore recorded the diagnosis) as having only a sprain/strain because the fracture was too
minor or uncertain. Other flagged cases had a discharge diagnosis completely unrelated to limb injuries; e.g., a ICD-10
code representing self harm or congestive heart failure. To better understand the different flagged cases, all 274 were
manually reviewed and assigned one of four categories described in Table 5. Note that all of the categories represent
the situation where a limb abnormality (as defined in this work) may have been undiagnosed in ER; however, only the
Missed Diagnosis category represents the situation where a limb abnormality was certainly missed.

The distribution of these different flagged categories, for each dataset, is shown in Figure 3. The most common
category was a Related Diagnosis (e.g., the crush injury example). (All of the GCH and most of the RCH patients
fell into this category.) The RBWH dataset contained a larger portion of both Unrelated Diagnosis and More
General Diagnosis. This highlights the differences in the way the ICD-10 codes are assigned at different hospitals
and how this might affect the use of these codes (our study being but one example of this). A total of 9 genuine Missed
Diagnosis cases were identified in the RBWH dataset; these were either No injury found or Patient did not wait.

Clearly the way ICD-10 codes are assigned affects the reconciliation process, with many flagged cases being the
situation where the ER clinician was aware of the abnormality but this fact was not conveyed in the ICD-10 code.
However, even given this issue, if the clinician only had to review the 274 flagged cases, this would represent only
11% of the 2,378 reports they previously had to be reviewed — still representing a significant time saving.

Conclusions

We described a set of techniques to identify limb abnormalities from free-text radiology reports. The empirical evalu-
ation showed that these methods are highly effective and that, importantly, they are robust across hospital datasets that
are different in both size and similarity. We further show that the automatic classification can be used to reconcile the
radiologist’s finding with the ICD-10 discharge diagnosis from the Emergency Room. Using this method, a number



Figure 3: Breakdown of different “flagged” cases (radiology abnormal but ER discharge diagnosis normal) according
to the four different categories outline in Table 5.
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of potentially undiagnosed limb abnormalities were identified. A thorough manual analysis of these cases showed that
some may be cases where the ICD-10 discharge diagnosis was ambiguous (highlighting the need for accurate ICD-10
coding in ERs); however, some genuine missed diagnoses were uncovered by the automated reconciliation process.
Overall, the savings for a clinician were significant with only 11% of the entire dataset now requiring manual review.
As such, the system is part of a pilot study in the Emergency Room of the Royal Brisbane and Women’s Hospital.

While the final discharge diagnosis is recorded as an ICD-10 code, the ER clinician may also provide a short de-
scription. Although the ICD-10 code may be ambiguous (e.g., crush injury), the clinician’s description can contain an
explicit mention of an abnormality. This additional source of information, in combination with the ICD-10 code, could
be exploited to provide a better classification of the discharge diagnosis. In fact, similar machine learning techniques
to those we have described for classifying free-text radiology reports could be adapted to classifying ER notes12. The
development and evaluation of such a method is an immediate area of future work.

Finally, this study has focused specifically on limb abnormalities described in radiology reports; however, the methods
are not specific to this situation. Other types of abnormalities (e.g., presence of cancers) are currently being investi-
gated and the methods are also being applied to the detection and reconciliation of different conditions mentioned in
pathology reports (e.g., reconciling the antibiotic given to a patient against the antibiotic sensitivities identified in a
microbiology report).
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A Regex Rules for Keyword Spotting

List of regular expressions used to implement the keyword baseline method. In addition, if a match is found then the
matching text is also tested for negation (e.g., “no fracture”), in which case the report is reported as “normal”, i.e., no
fracture or other abnormality found.

"\bfracture", "\bno\b", "\bold\b", "\bfollow[\\s]*up\b", "\bx[\\s]*ray\b", "\bdislocation\b", "\bfb\b",
"\bosteomyelitis\b", "\bosteoly", "\bdisplacement\b", "\bintraarticular extension\b", "\bforeign body\b",
"\barticular effusion\b", "\bavulsion\b", "\bseptic arthritis\b", "\bsubluxation\b", "\bosteotomy\b",
"\bcallus\b", "\bno\b[a-z\\s]+\bfracture"



B ICD-10 Abnormal Codes

Set of ICD-10 codes that indicate an abnormal discharge diagnosis from the emergency room.

S03.2, S13.10, S03.0, S93.0, S93.30, S73.00, S83.10, S83.0, S93.10, S33.2, S33.10, S23.10, S43.1, S53.10, S63.10,

S53.18, S43.3, S43.2, S63.0, S02.1, S62.1, S42.00, S02.9, S02.4, S02.6, S02.2, S02.3, S02.5, S72.40, S72.00, S72.10,

S72.3, S72.04, S92.0, S92.9, S92.2, S02.0, S42.40, S42.3, S42.20, S62.2, S12.9, S12.8, S82.0, S32.4, S32.5, S32.83,

S52.50, S52.8, S52.4, S62.0, S42.10, S62.5, S82.81, S82.6, S82.5, S82.88, S82.28, S82.82, S82.18, S22.5, S32.00,

S22.3, S22.2, S22.00, S52.20, S82.4, S82.3, S62.6, S92.4, S92.5, M84.49, M86.99, M91.1, M93.0, Z47.8
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