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ABSTRACT
We present a search engine aimed to help clinicians find targeted
treatments for children with cancer. Childhood cancer is a leading
cause of death and clinicians increasingly seek treatments that are
tailored to an individual patient, particularly their tumour genet-
ics. Finding treatments that are specific to paediatrics and match
individual genetics is a real challenge amongst the vast and grow-
ing body of medical literature and clinical trials. We aim to help
clinicians through a search system tailored to this problem.

The system retrieves PubMed articles and clinical trials. Entity
extraction is done to highlight genes, drugs and cancers — three key
information types clinicians care about. Query suggestion helps
clinicians formulate otherwise difficult queries and results are pre-
sented as a knowledge graph to help result interpretability. The
proposed system aims to both significantly reduce the effort of
searching for targeted treatments and potentially find life saving
treatments that may have otherwise been missed. Demo details at
http://health-search.csiro.au/oscar/.
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1 PROBLEM AND TARGET USERS
Cancer is the leading cause of death for children and adolescents
worldwide [9] with 400,000 cases a year [15]. A cure is found in
80% of cases in high-income countries and 15–45% in low-income
countries [9]. Early diagnosis and targeted treatment are the main
criteria for success. Cancer in children has a strong genetic com-
ponent [12, 14]; 10% of all children with cancer have a genetic
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predisposition [18]. Treatments are particularly successful when
tailored to the specific genetics of the child’s tumour — this is the
principle of precision medicine [1].

While treatments tailored to a child’s tumour genetics can save
their life, finding that treatment represents a significant challenge.
Treatments can be hidden in two sources: clinical trials (ongoing,
rigorous experiments to test new treatments) and medical literature.
There is an ever growing collection of both.1 Special search tools are
needed to find the targeted treatment needle in this over growing
treatment haystack. This paper describes such a system.

The user is a paediatric oncologist. They will know what cancer
the child has been diagnosed with and the results of the child’s
genetic test. Given these two pieces of information they will formu-
late a query to search for treatments. Treatments can be organised
in a rough hierarchy of preference:
• Paediatric treatments are preferred to adult only treatments. (Al-
though most of the evidence out there will be in the adult space.)
Paediatric patients are generally divided in two categories: < 12
years old and 12–16 years old (> 16 being considered an adult).

• Clinical trials that are in their latter phases (early phases are only
concerned with safety rather than efficacy; final phases obtain
approval for general use).

• Treatments specific to the cancer type of the patient are preferred
to either the general cancers or to other cancer types.

• Treatments that act upon the specific genes are of particular
interest and importance.

• Meta-analyses considering multiple studies are preferred over
single randomised control trials, which are preferred over obser-
vational studies, which are preferred over single case studies.
According to the above, the paediatric oncologist will begin

searching for the preferred type of treatment but will move ‘down’
the hierarchy if no suitable treatments are found. The key issue from
this process is how laborious it is: for a single patient it may require
8 hours of searching and reading results to fully explore all the
treatment options.2 Finding a single relevant document describing
the right treatment can be life saving.

2 SYSTEM OVERVIEW
Figure 1 provides an overview and the general workflow of the
system. Each step in the process is described below:
➊ The information need comes from a specific patient: a child

with a specific cancer type. The unique genetics of the patient’s
tumour are provided to the clinician in a report.

1At the time of writing, ClinicalTrials.gov lists 367,512 trials and PubMed contains
more than 27 million journal articles.
2Personal experience of paediatric oncologist author N. Omer.
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Figure 1: System overview and workflow.

➋ Given the cancer type and genetic information the clinician has
to formulate a query to find targeted treatments.

➌ The system searches PubMed and ClinicalTrials.gov.
➍ All retrieved documents are annotated with the three entity

types: genes, drugs and cancers.
➎ The annotated documents are returned to the frontend.
➏ The frontend renders the results, using the entity types to con-

vey different facets to the clinician. Results can be viewed as a
standard SERP and knowledge graph.

2.1 Entity Extraction
From a paediatric oncologists point of view, three types are infor-
mation are important when searching for treatments: genes, which
describe the unique characteristics of the patient; drugs, which in
the cancer space are the main treatment type; and cancers, which
is the specific type of cancer affecting the patient. We treat these
as three entities types and develop our system around extracting
mentions of these entities from documents (clinical trials and med-
ical literature). Entity extraction is done using BERN: a neural,
medical, named entity recognition tool [6]. BERN uses pre-trained
BioBERT [10] to map free-text to biomedical entities. We employ
and adapt BERN to output genes, drugs and cancers.

2.2 Retrieval Backend
Currently the retrieval backend acts as a meta search engine to two
sources: PubMed and ClinicalTrials.gov. Both have API endpoints.3

The query is received by the retrieval backend and sent to the
individual search components responsible for PubMed and Clini-
calTrials. This is done in parallel to speed up response time.

On receipt of results from each service the result documents
(trials or articles) are pushed onto a processing queue for the entity
extraction pipeline. Multiple, parallel entity extraction ‘workers’
pop each document off the queue, annotate mentions of genes,
drugs and cancers, then push the results onto a results queue.
This allows for high throughout processing of entity extraction —
a process that would otherwise be slow.

Once all results have been through entity extraction, they are
passed to a reranker. Reranking preferences trials in latter phases
and any documents relating to paediatrics. Finally, after reranking,
the JSON results are passed back to the Web frontend.

3PubMed API: https://www.ncbi.nlm.nih.gov/home/develop/api/
ClinicalTrials.gov: https://clinicaltrials.gov/api/gui.

2.3 Web Frontend / UI
The clinician is presented with a free-text search box; results are
shown in a SERP.4 Figure 2 shows a screenshot of UI. The SERP is
a mix of trials and PubMed articles; for each, a title and snippet is
shown, plus associated entities displayed as tags or labels. Entities
are colour-coded according to entity type (a legend for these is
displayed below the search box). For clinical trials, a label shows
the trial phase. Each document also has a widget indicating the age
range to which this document refers (<12, 12–Adult, and Adult).

Results can be filtered using the sliders at the top of the results.
Clinicians can narrow their results to: specific age ranges; certain
clinical trail phases; and display only trials or PubMed articles.5

Finally, each document has a toggle button to save that document.
There is a separate tab to view saved documents. This supports
the clinician’s workflow of spending time searching before then
moving to the separate phase of reading documents in detail.

2.4 Entity-based Query Suggestion
Studies on how clinicians search have shown that query formulation
is challenging [8]. There is high variance between clinicians, some
being significantly better at formulating queries. These findings
motivate the development of tools and techniques that aid the
searcher with query formulation. One tried and tested method for
this in information retrieval is query suggestion.

We use the entities contained in a set of search results as candi-
dates for query suggestion. As the user enters a query, the system
suggests matching entities from the retrieval results. (This meth-
ods obviously requires the user to have done an initial search to
populate the result list.) Entities can be multi-word phrases and are
colour coded according to their entity type. By clicking an entity,
that entity is appended to the query. This allows the searcher to 1)
reformulate their query according to the entities in their results;
and 2) gain quick and easy insights into what entities are in their
results. A sample query suggestion session is shown in Figure 3.

2.5 Knowledge Graph
While formulating effective queries in the medical domain is one
issue, interpreting results is another. Even when presented with
relevant results, clinicians may struggle to recognise them as such;

4The frontend is implemented in React and Bootstrap.
5The screenshot shows a check mark for ‘Web’. This was to indicate that future work
may incorporate results from the Web using, e.g., the Bing search API.
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Figure 2: UI results. A sample SERP for the query ‘Embryonal Rhabdomyosarcoma FGF10 FGFR1’.

Figure 3: Sample query autocompletion session with three
entities already added to the query. The clinician has typed
‘P’ and a list of suggested entities is provided.

this is because assessing relevance in the medical domain is non-
trivial [7]. In fact, the ability for the searcher to interpret results can
have a greater impact than the effectiveness of the IR system they
use [17]. One issue being the difficulty to recognise relationships
between disparate pieces of information [7]. One way to help make
these relationships clearer is through a graph-based visualisation.

Toward this aim, we construct a knowledge graph of the search
results. A sample knowledge graph for the query ‘Embryonal Rhab-
domyosarcoma FGF10 FGFR1’ is shown in Figure 4 (this is the
knowledge graph for the results of Figure 2). Nodes in the graph
represent the entities found in the set of search results. Edges cur-
rently represent co-occurrence of entities within some context
window. Currently, the context window is co-occurrence within a
medical article or clinical trial; however, this can be adapted to other

context windows. In future the knowledge graph may integrate
information from relevant external medical ontologies such as the
Gene Ontology Resource [2]. The graph is interactive and can be
manipulated by zooming or dragging nodes around to reorganise
the graph. Right-clicking on a node/entity will display a pop-up
that lists all the articles where that entity is mentioned. A small ‘+’
button allows that entity to be appended to the query, thus allowing
clinicians to refine their query while in the knowledge graph view.

3 COMPARISONWITH OTHER SYSTEMS
The system acts as a meta-search engine on top of ClinicalTrials.gov
and PubMed. This was done for three reasons: enables us to reuse
(and hence not reimplement) many of the base features that these
systems support; it circumvents the needs to develop a separate
component for updating a local index as more trials and literature
gets added; it sits well with clinicians who are familiar with the use
of PubMed and ClinicalTrials.gov. Using these two external services
as the base search systems, we then focus on adding enhanced
features that meet the paediatric oncology space: entity extraction
based on genes, drugs and cancers; filtering based on age and trial
phase; and a focus on query formulation and results visualisation.

Besides general search services such as PubMed and Clinicaltri-
als.gov, there are specialist services that help identify treatments.
Apps such as UpToDate [5] provide evidence-based clinical infor-
mation compiled and edited by medical professionals. While high
quality, scope is very limited to common areas and well established
treatments; thus it lacks both the breadth and recency requirements
of paediatrics, rare cancers and access to the latest treatments.



Figure 4: UI results. A sample knowledge graph for the query ‘Embryonal Rhabdomyosarcoma FGF10 FGFR1’.

Specialist clinical trials recommender systems do cover the lat-
est treatments and support clinician filters [3, 16]. However, such
systems are nearly always specific to one medical area (e.g., haema-
tology) and thus do not cover the breadth needed for paediatric
oncology, nor the nuances of paediatrics. The systems also focus
only on trials: they do not allow the clinician to search literature and
have these results interleaved with trials within the same system.

4 IMPACT AND OUTLOOK
Currently our system does an initial retrieval (PubMed and Clini-
calTrials.gov) and then reranks based on age and phase. Filters do
provide some control for clinicians but the overall ranking can be
improved. Specifically, ranking would be best achieved according
the ‘hierarchy of preference’ presented in the introduction. This is
a complex set of criteria so implementing a ranking methods that
satisfies it will be equally complex. Learning-to-rank would be an
attractive avenue to take. However, crafting the requisite training
data is tricky — not only is compiling a sufficient volume laborious
but the task itself makes training a single model difficult. This is
because for some cases recall is paramount (e.g., rare cancers where
it is essential to retrieve that one relevant treatment); while in other
cases precision is the aim (e.g., for a common cancer that have a
mix of relevant, partially relevant and non relevant results).

Good query formulation is hard in this domain where the clini-
cian does not always know what treatments are out there. As such,
efforts to aid query formulation should be pursued.We implemented
an entity-based query suggestion method in this vein but more can
be done. Query suggestions should account for the relationships
between entities (e.g., via the knowledge graph). Previous work has
developed visualisation tools for clinical queries [13]; this helps
the clinician understand the impact of individual query terms on

their results and we intent to incorporate this tool in future releases.
Finally, query performance prediction methods could provide some
quantitative feedback to the clinician about the efficacy of their
query and could help guide effective query reformulation [4].

Knowledge graph construction is currently based on basic en-
tity concurrence. There is a large body of research on knowledge
graph construction that can be drawn upon to make this more
effective [11]. In particular, the graph construction can be more
contextualised to the current query and associated set of results. It
is possible for the knowledge graph to become large and unwieldy
so effective pruning or hiding techniques should be investigated.

The proof of the pudding is of course in the eating; thus all
efforts should lead to an appropriately run user study with real
patient cases and real paediatric oncologists. Evaluation will need
to consider not only traditional IR effectiveness metrics but also
effort or work saved because a paediatric oncologist’s time is scarce
and time spent searching is time not spent seeing patients.

The system described here aims to help paediatric oncologists
find targeted treatments to childhood cancer. The system draws
on two sources: medical literature from PubMed and trials from
ClinicalTrials.gov. Entity extraction is done to capture three key
types of information: drugs, cancers, genes. Result display is also
based around these entity types, with an interactive, entity-based
knowledge graph constructed, providing clinicians with a more
interpretable alternative to a traditional SERP. Entity-based query
suggestion is provided to help in query formulation.

A full fledged user study is planned to empirically evaluate the
system with real patient cases and clinicians. If adopted in clin-
ical practise, the system provides a necessary tool for precision
medicine, tailoring the treatment to the individual. In the childhood
cancer space, this is can be life-saving.
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