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ABSTRACT
Searchingmedical literature for synthesis in a systematic review is a
complex and labour intensive task. In this context, expert searchers
construct lengthy Boolean queries. The universe of possible query
variations can be massive: a single query can be composed of hun-
dreds of field-restricted search terms/phrases or ontological con-
cepts, each grouped by a logical operator nested to depths of some-
times five or more levels deep. With the many choices about how
to construct a query, it is difficult to both formulate and recognise
effective queries. To address this challenge, automatic methods
have recently been explored for generating and selecting effective
Boolean query variations for systematic reviews. The limiting factor
of these methods is that it is computationally infeasible to process
all query variations for training the methods. To overcome this,
we propose novel query variation sampling methods for training
Learning to Rank models to rank queries. Our results show that
query sampling methods do directly impact the ability of a Learning
to Rank model to effectively identify good query variations. Thus,
selecting appropriate query sampling methods is a key problem
for the automatic reformulation of effective Boolean queries for
systematic review literature search. We find that the best sampling
strategies are those which balance the diversity of queries with the
quantity of queries.
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1 INTRODUCTION
Systematic reviews form the cornerstone of evidence basedmedicine.
A systematic review (SR) synthesises all relevant literature for a
highly focused research question. The majority of medical literature
is contained in online databases, e.g., PubMed. A key process in
creating SRs is the formulation of Boolean queries which retrieve
studies that are then screened (assessed) for inclusion in the review.
Query formulation ultimately influences both the costs and quality
of the review. These queries are unlike those used in traditional web
search tasks. Queries used for SR literature search are often large
and complex, with comprehensiveness in mind. The complexity of
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these Boolean queries arise from nested Boolean clauses, database
field restrictions, time, date, study, and language restrictions, on-
tological hierarchies, among other operators. Query formulation
in this context typically requires extensive effort from information
specialists: trained librarians with deep knowledge of the search
system and the study matter. The role of an information specialists
is to balance the cost of screening every study with the require-
ment of retrieving all relevant studies. A narrow query results in
many false negatives; i.e., studies relevant to the review but not
retrieved, introducing bias and possibly leading the review to an
incorrect conclusion [20]. A broad query results in many false posi-
tives, increasing the time and costs required to complete a review.
The trade-off between narrow and broad queries has real monetary
consequences. Currently, on average, a SR takes up to two years
and costs in excess of a quarter of a million dollars [19], while
having low levels of precision [14]. The research underlying this
paper aims to reduce the time and costs associated with SR cre-
ation by focusing on the query formulation phase [30]. The query
impacts all downstream activities of the review (e.g., screening,
synthesis), so improving this process is key to reducing the over-
all time and cost of SRs. The outcomes of this paper are methods
to support automatic Boolean query formulation by investigating
how different sampling strategies affect Learning to Rank (LTR)
models. These models rank query variations to be used in place of
queries initially built manually, in an attempt to greatly improve
effectiveness [28, 30]. Empirical evaluation of queries authored by
information specialists shows that they do not always produce ef-
fective queries [28]. Recent work also shows that queries produced
by information specialists can be improved by automatically gener-
ating query variations using the query transformation chain (QTC)
framework [30]. The QTC framework produces alternative queries
by modifying the syntax and semantics of a starting Boolean query
using predefined transformations. This results in the creation of a
‘universe’ of possible alternative queries through the iterative appli-
cation of transformations. Candidate selection is then responsible
for the automatic identification of one (or more) effective query
variations to continue the process. Scells et al. [28] have proposed
a number of candidate selection techniques, and empirically found
LTR to be the most effective. One key limitation with QTC, is the
approach used for sampling training queries. The process of gen-
erating query variations for training produces a computationally
infeasible amount of queries. The computational infeasibility is
worsened when (i) the original query has many clauses, (ii) when
many transformations are applicable to each clause, and (iii) when
many iterations of the process are considered: all typical conditions
of queries in the context of this paper. The computational com-
plexity required for generating the training queries is exponential
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Training Data Generation
Query space is explored by generating all possible variations for a 
query and sampling is used to bound the exploration.

Model Training

Ranking model is trained on generated query variations.

Model Testing

The top-1 ranked query variation at each point in the query chain is 
selected and used to generate the next set of variations.

Query Evaluation

The final query chosen at the end of the testing phase is evaluated.

Figure 1: High-level overview of the experimental pipeline.
Emphasis is placed on generation (dotted box), where train-
ing queries are created by exploring the query space. Explo-
ration is computationally expensive; thus bounded by the
sampling methods. In the testing phase, sampling is not re-
quired: only the selected query in each step of the chain is
used to generate the next set of variations.

in nature. If n is the total number of variations at one step in the
chain, and t is the number of transformations, then the complexity
of generating training queries isO(nt ). One solution to the problem
was to randomly or greedily sample a predetermined number of
query variations [28, 30]. The way query variations are sampled,
however, can influence the effectiveness of LTR models trained on
these queries. We provide evidence for this with a case study in
Section 2 which establishes the motivations for the remainder of
this paper. Following this, we investigate the impact sampling has
on the effectiveness of trained models and establish novel sampling
strategies for this problem. Furthermore, previous work has consid-
ered exploring the space of candidate queries using a breadth-first
exploration method. In this paper, we contribute a depth-first explo-
ration method and adapt applicable sampling strategies. Figure 1
presents a high-level overview of the experimental pipeline for
QTC, where the sampling experiments fit, the impact sampling has
on the rest of the pipeline. The aim of this paper is to show the
impact different sampling strategies have on LTR models, balancing
computational time with the number of sampling strategies tested.
2 MOTIVATING EXAMPLE
We motivate this work with an example where training query vari-
ations are sampled according to three naïve strategies: (1) sample
queries which improve over the original query (positive) (2) sample
queries which do not improve over the original query (negative),
and (3) sample queries randomly. Improvement over the original
query is measured using precision, recall, and F1 measure. Evalu-
ation is achieved by using studies that were marked for possible
inclusion in the original review, as retrieved by the original query.
Distributions of sampled queries with respect to F1 are presented
in Figure 2. The random distribution is the same for both plots and
is included in both for comparison. Both the precision- and recall-
based distributions using positive strategies have queries with a
higher average F1 compared to negative. The randomly sampled
distribution of queries has the lowest average F1 in both cases.

Next, three LTR models are trained using queries from each sam-
pling strategy, optimising for either precision or recall. The use
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Figure 2: Distributions of sampled queries using strategies
that sample positively, negatively, and randomly. Average is
signified by▲. Total samples in each distribution is signified
by Σ. Queries with F1 >0.4 are omitted for clarity.
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Figure 3: Distributions of selected queries, chosen by
selectors trained on only positive queries (precision:
PositiveP , recall: PositiveR ), only negative queries (preci-
sion: NegativeP , recall: NegativeR ), and randomly selected
queries. Averages (λ) are signified by ▲. Queries with F1
>0.15 are omitted for clarity. Statistical significance with
Bonferroni correction (p < 0.05) between original queries
and selected queries is signified by †.
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Figure 4: Relationship between the average sampled query
(i.e., average value of queries from each sampled distribu-
tion; those in Figure 2) and selected queries (i.e., those in Fig-
ure 3). Horizontal axis: average F1 of sampled queries. Ver-
tical axis: F1 of selected queries. Linear relationship is sig-
nified by the solid black lines. Pearson’s r between sampled
and selected queries is recorded beneath.

of evaluation measures for optimisation is adopted from previous
work [28] and is done to cater for standard SRs or alternative types
of reviews such as rapid reviews (i.e., where total recall require-
ments are traded off for high levels of precision). Note that the
optimisation of the LTR model is different to how queries are sam-
pled: optimisation refers to the objective function of the LTR model.
Only the LTR model trained on queries sampled using precision
optimises for precision. Likewise, only the LTR model trained on
queries sampled using recall optimises for recall. Both the model
optimising for precision and the model optimising for recall are
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trained on the same randomly sampled queries. Six LTR models
in total are created.1 A summary of the results is presented in Fig-
ure 3. The order of each box-plot is the same as in Figure 2. Selected
queries are evaluated with respect to gains and losses in F1 over
the original queries. The results for the LTR model trained on posi-
tively sampled precision queries, optimised for precision (PositiveP )
showcase best the impact of sampling. The PositiveP model selects
query variations that are on average statistically significantly bet-
ter than the original queries (p < 0.05). Likewise, the counterpart
positive recall optimised model (PositiveR ) selects query variations
that are also on average statistically significantly better than the
original queries, but not as effective as the precision-based model.
Meanwhile, both models trained on the negatively sampled queries
(NegativeP and NegativeR ) select queries which are less effective
than the original queries. The models trained on queries sampled
randomly (RandomP and RandomR ) select queries with effective-
ness somewhere between the two other models. The relationship
between sampled queries for training a LTR model and queries se-
lected by the model trained on those sampled queries is presented
in Figure 4. Queries selected by models trained on positive samples
are strongly positively correlated with each other. Meanwhile, nega-
tively and randomly samples are only weakly positively correlated.

These results highlight the importance of sampling in training
LTR models in this context. The consequence of training a LTR
model on only queries that are more effective than the original
query (positive) is that selected variations are significantly more
effective than the original query. On the other hand, LTR models
trained on negative or random samples result in the selection of
variations that are less effective than the original query. Indeed,
the relationship between selected queries and queries used for
training is correlated with effectiveness. This motivates the work
and methods presented in this paper.
3 AUTOMATIC QUERY TRANSFORMATIONS
The QTC framework proposed by Scells and Zuccon [28] sampled
queries using a greedy strategy. Another study [30] which usedQTC
instead sampled queries randomly. Both approaches to sampling
used the same exploration method (breadth-first), but a different
sampling strategy (greedy vs. random). In this paper, we add to
and build upon these previous sampling strategies, and propose
a new exploration method based on depth-first search. Next, we
provide a working description of QTC for generating and selecting
variations of a Boolean query. Given an input Boolean query, the
QTC first identifies the set of transformations T ′ that are applicable,
defined as: T ′ = {∀τ ∈ T |a(τ , c) = 1}, where T is the set of
transformations, and a the applicability function, defined as:

a(τ , c) =

{
1, if τ is applicable to clause c
0, otherwise

A clause c is any component of a Boolean query: an individual
keyword or a grouping of keywords and other clauses. The applica-
bility of a transformation to a clause is dependent on the intrinsic
aspects of a clause.Once transformations have been applied to a in-
put query q, a candidate query q∗ is selected from the set Q̂q which
includes the generated candidates and the original query. At each
point in the chain, a candidate query q∗ is selected by maximising

1(3 sampling strategies×optimise precision)+(3 sampling strategies×optimise recall)

a candidate selection function: q∗ = argmaxq̂∈Q̂q f (q̂). This func-
tion can be instantiated according to a classification or a ranking
task. Empirical results in previous work have shown ranking to
be superior [28]. In previous studies using QTC, the objective of
the learning method is to maximise an evaluation measure [28, 30].
Thus, in order to train such a model, examples of queries and eval-
uation scores (i.e., labels) must be provided. One trivial method
to generate large amounts of training queries is query variations.
However, as it is computationally infeasible to explore all possible
variations of a query, sampling must be applied.
4 SAMPLING
We propose two exploration methods for sampling the query
space to obtain training queries: breadth-first and depth-first. Each
of these methods can be instantiated according to a number of sam-
pling strategies, which each lead to sampling different queries.
4.1 Breadth-First Exploration
The breadth-first explorationmethod uses pooling to sample queries
through reduction. The amount of reduction is determined by two
parameters which controls the ratio of queries to sample: n, con-
trols the minimum number of queries to sample; δ , controls the
percentage of queries to sample. If |Q̂ | < n + (δ × |Q̂ |), all queries
are included in the sample. Queries are sampled into each strata
randomly. The sampling strategies using breadth-first exploration
we consider are:
4.1.1 Greedy Sampling Strategies. These sampling strategies are
adapted from the greedy candidate selector of Scells and Zuc-
con [28]. With these strategies, queries are sampled by choosing
those which minimise the number of retrieved documents while
maximising an evaluation measure. In addition to the n and δ pa-
rameters, an evaluation measure has to be specified.

• Greedy Naive: Minimise the number of citations retrieved
by the candidate query (N , where N > 0), while maximising
the number of relevant citations retrieved.

• Greedy Diversity: Maximise the evaluation score while
diversifying the queries. We use Maximal Marginal Rele-
vance (MMR) [7] as our diversity function. To apply MMR
to query re-ranking, we replace the similarity between a
document and query of the original MMR formulation with
the evaluation measure of the query (Ev(Q)). Thus, score =
λ · Ev(Q) + (1 − λ) · Sim(qi ,Q). We use cosine similarity for
Sim().

4.1.2 Evaluation Sampling Strategies. These strategies use explicit
relevance judgements for sampling queries – this is possible as sam-
pling is only performed on training data (i.e. no need for relevance
judgements when reformulating a query for a new SR). Only the
scores for a given evaluation measure are considered, thus each
strategy below must be paired with an evaluation measure.

• Evaluation Stratified: Two strata are obtained by sampling
proportionately across pooled candidate queries.

• Evaluation Balanced: Sample uniformly according to the
score of a given evaluation measure across pooled candidate
queries.

• EvaluationPositivelyBiased:Candidates are sampled only
when they are more effective than the seed query.

• Evaluation Negatively Biased: Candidates are sampled
only when they are less effective than the seed query.
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• EvaluationDiversity: Re-rank pooled candidate queries by
applying MMR to the score of a given evaluation measure for
queries, then sample uniformly across the new distribution.

4.1.3 Transformation Sampling Strategies. The types of transfor-
mations applied to generate each variation are considered when
sampling. Transformation samplers aims to sample across the types
of transformations applied to queries.

• Transformation Stratified: Stratified (proportional) sam-
pling across the pooled queries. The number of strata is equal
to the total number of types of transformations in the pool.

• Transformation Balanced: Balanced (uniform) sampling
across the pooled candidate queries. Candidates are balanced
into the number of types of transformations in the candidate
pool.

4.1.4 Clustering Sampling Strategy. k-means++ [4] with k = 5
clusters queries using features from [28]. Queries are sampled from
each cluster in a round-robin fashion, up to the cut-off n.
4.1.5 Random Sampling Strategy. Included as a naïve approach
to sampling to determine if other techniques provide significant
benefits over random sampling. This approach has been used in
previous work [30]. Candidates are sampled uniformly.
4.2 Depth-First Exploration
The depth-first exploration method uses depth-first search to tra-
verse query chains. Candidate queries are sampled in the same
fashion as in Section 4.1, however rather than sampling from a
pool of queries, the chain of previous queries is used to determine
inclusion in the sample set. To adapt breadth-first strategies to
depth-first, a cost-based approach is used. Each strategy has a bud-
get of how many queries may be sampled. The benefit of using
the depth-first exploration method over the breadth-first method is
that queries can be sampled with respect to a sequence of transfor-
mations, rather than pooling at depth. The following strategies are
be adapted to depth-first:

• Evaluation Positively Biased: Sample candidates where,
given an evaluation measure, the chain of queries including
the most recent query are more effective than the original
query.

• Evaluation Negatively Biased: Choose candidates where,
given an evaluation measure, the chain of queries including
the most recent query are less effective than the original
query.

• Transformation Balanced: Sample candidates where the
chain of transformations applied to previous candidates is
balanced in terms of which transformations have been ap-
plied.

• Random: Sample candidates according to a uniform likeli-
hood.

In addition to adapted strategies, the following strategy is unique
to the depth-first exploration method:

• TransformationBiased: Choose candidateswhere the chain
of transformations applied to previous candidates are all the
same as the most recent transformation applied.

5 EXPERIMENTAL SETUP
Experiments are performed using 125 SR queries from Scells et
al. [31]. Evaluation considers relevant studies as those retrieved
by the original query and marked as eligible to be included in the

final review (abstract-level relevance). When sampling queries us-
ing breadth-first exploration, n is set to 10 and δ is set to 0. Using
depth-first exploration, a budget of 65 queries was found through
empirical experimentation to produce a similar number of sampled
queries to breadth-first exploration strategies. Each sampled query
is evaluated using Precision, Recall, and F1. The evaluation mea-
sure is used as the label for training LTR models.For diversity-based
sampling strategies (Greedy Diversity and Evaluation Diversity), λ
is set to 0.3, trading similar scoring queries for diverse queries. For
random sampling strategies, the likelihood of sampling is set to 65%.
The PubMed entrez API [27] is used as the retrieval system. For
each sampling strategy, a LTR model for each evaluation measure
is trained and evaluated. All queries are used to train LTR models
using five-fold cross validation, split into 80% training and 20%
validation. In total, a model is trained using each of 25 sampling
strategies × 6 target evaluation measures × 5 folds: 750 LTR models.
The LTR model used is the QuickRank [6] implementation of Lamb-
daMART [40]. Each LTR model is set to optimise DCG@1, placing
the most importance on the top-1 query (i.e., the query selected to
continue the chain). Queries are validated by evaluating them on
each of the aforementioned evaluation measures. We use the aver-
age F1 of selected queries to evaluate the performance of the LTR
models, as is typically done in this context. The aim of this paper
is to address any limitations and downsides to the strategies for
sampling queries in previous work [28, 30], and to identify better
sampling strategies. The limitations of previous work present three
research questions to be addressed:
RQ1: How does sampling affect the distribution of sampled query

effectiveness within the sampled set?
RQ2: How does sampling affect the distribution of selected query

effectiveness in the Query Transformation Chain framework?
RQ3: Are there relationships between the set of sampled queries

and the effectiveness of the selected queries?
In RQ1 and RQ2 we study the effectiveness of queries with re-
spect to two dimensions of sampling: the exploration method
and the sampling strategy. RQ1 investigates if sampling affects
the distribution of queries: e.g., if there are significant differences
when sampled query variations are sampled positively or negatively.
RQ2 investigates if sampled queries have a significant impact on
the effectiveness of selected query variations: e.g., if a LTR model
trained on positively biased queries selects query variations that
are significantly more effective than a LTR model trained on nega-
tively biased queries. RQ3 investigates any nuanced relationships
between sampled and selected queries.

6 RESULTS & ANALYSIS
Next, we present the analysis and results of the sampling exper-
iments; each of the following sections corresponds to a research
question. The baseline is the original queries. Gains are therefore
measured with respect to these (unless otherwise stated).
RQ1: Distributions of Sampled Queries Figure 5 presents the
distributions of F1 and size of sampled queries for each sampling
strategy in both exploration methods. In both breadth- and depth-
first exploration, the queries sampled using PositiveP obtain the
highest average F1. The queries sampled using the Greedy NaïveP
and Greedy NaïveR obtain the second highest F1 using breadth-first
exploration. Comparing the two Greedy sampling strategies with
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each other, the F1 of queries obtained by the Greedy Naïve sam-
pling strategy is, on average, higher than queries obtained using
the Greedy Diversified strategy. The queries in all other breadth-
first evaluation-based sampling strategies (Balanced, Diversified,
Stratified, Negative) obtain similar average F1 to each other. Fur-
thermore, the queries from the Transformation Stratified, Trans-
formation Balanced, Cluster, and Random sampling strategies all
obtain similar average F1 to the above evaluation-based strategies.
For depth-based exploration, all sampled distributions of queries
except PositiveP obtain similar average F1. When observing the
number of sampled queries in each distribution and the their av-
erage F1, no correlation was found. This indicates that the scores
of queries from each sampling strategy are not influenced by the
number of queries sampled by that strategy. In summary, the choice
in sampling strategies does affect the sampled queries – the effect
of which is studied in the following research questions.
RQ2: Distribution of Selected Queries Figure 6 presents the
selected queries using the same LTR model trained with query vari-
ations obtained with different sampling strategies. For the breadth-
first sampling strategies, GreedyDiversified P andGreedyDiversifiedR
select queries that are significantly more effective than the original.
Meanwhile, for depth-first sampling strategies, only the PositiveP
model was able to select queries that were significantly more effec-
tive than the original. The combination of breadth-first exploration
and Greedy DiversityP sampling lead to a LTR model which selects
the most effective queries. Next, the differences between sampling
strategies which are applicable in both the breadth- and depth-
first exploration are compared. Figure 7 presents the differences
between selected queries using the same sampling strategies, but
different exploration methods. This figure illustrates that the depth-
first sampling strategies which rely on evaluation for sampling
produce better training queries for the LTR models than the same
breadth-first strategies. However, there is little difference for the
Balanced Transformation and Random sampling strategies. This
indicates that the exploration method does play a role in the ef-
fectiveness of the LTR model, not just the sampling strategy. This
comparison highlights the significant impact exploration has on
the sampling strategy. Depth-first exploration can significantly im-
prove the effectiveness of selected queries and is a key contribution
of this paper. While the number of training queries in each distri-
bution is relatively low (previous work considered approximately
10,000-700,000 training queries per topic [28, 30]), impacting the
resulting LTR models, the effects of sampling are still highly visible.
Generating query variations for the training phase becomes in-
creasingly computationally expensive as more sampling strategies
are considered. The number of sampling strategies considered for
comparison limits the number of queries that may be generated
by each strategy. Also, the original queries have already passed
the rigorous scrutiny of peer review, and already considered to be
highly effective. Any gains by a selected query over the original
has considerable time and monetary impacts [19]. These results
suggest that sampling only by query effectiveness is not the best
strategy. The combination of effectiveness and diversity that the
breadth-first Greedy Diversified sampling strategies permit results
in the most effective LTR models.
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Figure 5: Distributions of sampled queries across the
breadth-first (left) and depth-first (right) sampling strate-
gies. Averages are signified by ▲. Total samples in each dis-
tribution is signified by Σ.
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Figure 6: Gains/losses for queries selected using sampling
strategies with breadth-first (left) and depth-first explo-
ration methods (right). Averages (λ) are signified by ▲. Sta-
tistical significance with Bonferroni correction (p < 0.05) is
signified by †. The most effective model(s) for each explo-
ration method is highlighted in bold.
RQ3: Sampled and Selected Relationship The first the relation-
ship we investigate is between sampled and selected queries is in-
vestigated. Figure 8 presents the relationship for the best and worst
queries using the breadth- and depth-first exploration methods
(identified in RQ2). Selected queries are weakly positively corre-
lated with the sampled queries (Figure 8, right). Queries selected by
these best performing models are moderately correlated with sam-
pled queries (Figure 8, left). This suggest that particular sampled
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Figure 7: Differences between the depth- and breadth-first
exploration. Averages (λ) signified by ▲. Statistical signifi-
cance with Bonferroni correction (p < 0.05) is indicated by
†.
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Figure 8: Relationship between average of queries in Fig-
ure 5, and selected queries from Figure 6 for best and worst
models for breadth- and depth-first exploration. Horizontal
axis is average F1 of sampled queries. Vertical axis is F1 of se-
lected queries. Linear relationship between these variables
is signified by black line. Pearson’s r between sampled and
selected queries reported beneath.
queries do impact the effectiveness of LTR models. The second rela-
tionship we investigate is between the number of sampled queries
for each model and the effectiveness of queries selected using that
model (Figure 9). A moderate positive correlation is observed, sug-
gesting increasing the amount of training queries leads to more
effective LTR models. In summary, there are relationships between
the sampled queries and the selected queries. These relationships
empirically suggest that (a) a well-distributed sampled set of queries
(in terms of effectiveness), and (b) the quantity of queries sampled,
both lead to more effective models.
7 RELATEDWORK
We consider the problem of reducing the cost and time associated
with the construction of SRs. SRs require considerable effort to
construct and often become out of date by the time of publica-
tion [35]. The average SR takes upwards of 2 years and USD $230K
to create [19]. Currently only 36% of Cochrane SRs are deemed
up-to-date. Previous attempts to reduce costs attempt to automate
downstream processes, mostly by text mining methods to support
the appraisal [10, 25], analysis [37] and synthesis [26, 33, 34] of
studies post search. An emerging area of research in this context
that exploits advances in information retrieval is screening priori-
tisation: ranking retrieved studies [1–3, 9, 15, 16, 23, 29, 39, 42].
This however does not reduce screening costs: all studies are still
required to be screened. Instead, it possibly shortens the total time
to compile the review: when a relevant study is identified when
screening, it can be forwarded downstream.We tackled the problem
by addressing query formulation. Directly addressing the problem
at this stage represents a novel direction of research in compari-
son with previous work, and directly impacts downstream tasks of
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Figure 9: Relationship between all queries selected using a
model trained on all sampling methods (breadth-first meth-
ods: white, depth-first methods: black) and the number of
samples used to train each model. The linear relationship
between these variables is signified by a solid black line.

the SR creation pipeline. Syntactic and semantic modifications of
queries (e.g., expansion/reduction) have been shown to significantly
improve effectiveness of queries in general and specific domains
outside of that considered here [8, 12, 17, 22, 41]. The QTC frame-
work aims to automatically modify Boolean queries for SR literature
search [28, 30]. One issue raised in these works is the computational
and storage challenge of generating training data. This paper inves-
tigated novel sampling strategies to address these issues and how
they impact resulting LTR models.Researchers have noticed that of
sampling may have a higher impact on effectiveness than specific
aspects of any learning algorithm. Wu et al. [38] identified that
sampling in the context of Deep Embedding Learning has a much
higher impact on model effectiveness than the loss function. In the
context of LTR, Donmez et al. [11] and Aslam et al. [5] found that
sampling methods have a significant impact on the effectiveness of
ranking models. Donmez et al. used an active sampling approach to
maximise the estimated loss differential over unlabelled data. While
Aslam et al. investigated the effect sampling has on LTR in a typical
ad-hoc document retrieval setting. Their work uses sampling meth-
ods that do and do not use prior relevance knowledge to sample,
and evaluates sampling methods by how well a LTR model trained
on different sampling methods can rank documents given a query.
This setting is similar to the one we study in our work, although we
rank queries not documents. Similar studies have also investigated
the impact of sampling in a traditional LTR context from different
perspectives. For example, Kanoulas et al. [13] considered the distri-
bution of positive and negative training examples on a large scale,
and Lucchese et al. [18] investigated negative sampling to improve
LTR models. More related to this work is the study by Mehrotra et
al. [21] who developed query sampling methods to reduce labelling
costs for training an Active LTR model. Key to the effectiveness
of the selection of queries in that work is the informativeness and
representativeness characteristics of queries but it is unclear how
to apply these techniques in the context of this work.
8 CONCLUSIONS & FUTUREWORK
We present novel query sampling strategies within the context of
SR literature search. We also devise and formalise two exploration
methods for traversing query variation space that embed sampling
strategies. Sampling queries in this domain is necessary as queries
used to search literature for SRs are verbose and complex: the num-
ber of variations produced are computationally infeasible to handle.
While sampling cuts down on computation costs it leads to another
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problem: different subsets of training data result in different effec-
tiveness of LTR models. We empirically show these differences by
evaluating each sampling strategy. Our results suggest that sam-
pling strategies that rely on transformations or features of queries
are the least effective for training LTR models. The strategies that
diversify the effectiveness of queries provide higher gains than
those which rely on biasing effectiveness alone. While the gains
of selected queries over original queries may seem marginal, small
changes to precision while maintaining recall lead to significant
reductions in the total time and cost of the SR process [32]. There
are many domains that also use Boolean queries such as patent or
legal search. Typically, such requirements fall under ‘professional
search’ or ‘eDiscovery’ [24, 36]. The methods laid out in this work
can be easily adopted in these domains. Moreover, our framework
can be extended to add additional sampling strategies, e.g., a word
embeddings-based strategy. Determining the most effective sam-
pling strategy for training LTR models can lead to better methods
for assisting information specialists formulate queries (e.g., auto-
matic query recommendation and refinement). This can lead to
significant time and cost savings for the researchers conducting
SRs (i.e., less citations to screen as the query provided to them is
more effective than one formulated without automatic assistance).
Even minor improvements to queries can have a significant impact
on SR creation.
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